Patents by Inventor Jan Visser

Jan Visser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210159458
    Abstract: A display device includes a display layer having a plurality of organic light-emitting diodes (OLEDs) separated by gaps, and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a bilayer having a plurality of polymer projections on the display layer, the plurality of polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of polymer projections and an underlying surface in the spaces between the polymer projections, the dielectric layer forming side walls along sides of the polymer projections. The side walls are aligned with the gaps between the OLEDS, and/or the encapsulation layer has multiple bilayers.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20210159464
    Abstract: An organic light-emitting diode (OLED) structure includes a substrate, a dielectric layer on the substrate having an array of well structures with each well structure including a recess with side walls and a floor and the recesses are separated by plateaus having rounded top surfaces, a stack of OLED layers covering at least the floor of the well, and a light extraction layer (LEL) in the well over the stack of OLED layers.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20210159459
    Abstract: A method of encapsulating an organic light-emitting diode display includes depositing a plurality of first polymer projections onto a light-emitting side of a display layer having a plurality of organic light-emitting diodes (OLEDs) such that the plurality of first polymer projections have spaces therebetween that expose an underlying surface, and conformally coating the first polymer projections and the spaces between the first polymer projections with a first dielectric layer such that the first dielectric layer has side walls along sides of the first polymer projections and defines wells in spaces between the side walls.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20210135140
    Abstract: An organic light-emitting diode (OLED) structure includes a stack of OLED layers; a light extraction layer (LEL) comprising a UV-cured ink; and a UV blocking layer between the LEL and the stack of OLED layers.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 6, 2021
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Publication number: 20210135164
    Abstract: An organic light-emitting diode (OLED) structure includes a stack of OLED layers that includes a light emission zone having a planar portion, and a light extraction layer formed of a UV-cured ink disposed over the light emission zone of the stack of OLED layers. The light extraction layer has a gradient in index of refraction along an axis normal to the planar portion.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 6, 2021
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 10989840
    Abstract: Embodiments described herein relate to nanostructured trans-reflective filters having sub-wavelength dimensions. In one embodiment, the trans-reflective filter includes a film stack that transmits a filtered light within a range of wavelengths and reflects light not within the first range of wavelengths. The film stack includes a first metal film disposed on a substrate having a first thickness, a first dielectric film disposed on the first metal film having a second thickness, a second metal film disposed on the first dielectric film having a third thickness, and a second dielectric film disposed on the second metal film having a fourth thickness.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: April 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tapashree Roy, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Patent number: 10955606
    Abstract: Embodiments described herein relate to methods of fabricating waveguide structures with gratings having front angles less than about 45° and back angles less than about 45°. The methods include imprinting stamps into nanoimprint resists disposed on substrates. The nanoimprint resists are subjected to a cure process. The stamps are released from the nanoimprint resist at a release angle ? using a release method. The nanoimprint resists are subjected to an anneal process to form a waveguide structure comprising a plurality of gratings with a front angle ? and a back angle ? relative to a second plane of the surface of the substrate less than about 45°.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Yu-tak Young, Ludovic Godet, Robert Jan Visser, Wayne McMillan
  • Patent number: 10935492
    Abstract: An apparatus for determining a characteristic of a photoluminescent (PL) layer comprises: a light source that generates an excitation light that includes light from the visible or near-visible spectrum; an optical assembly configured to direct the excitation light onto a PL layer; a detector that is configured to receive a PL emission generated by the PL layer in response to the excitation light interacting with the PL layer and generate a signal based on the PL emission; and a computing device coupled to the detector and configured to receive the signal from the detector and determine a characteristic of the PL layer based on the signal.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: March 2, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Avishek Ghosh, Byung-Sung Kwak, Todd Egan, Robert Jan Visser, Gangadhar Banappanavar, Dinesh Kabra
  • Patent number: 10886137
    Abstract: Exemplary methods for selective etching of semiconductor materials may include flowing a fluorine-containing precursor into a processing region of a semiconductor processing chamber. The methods may also include flowing a silicon-containing suppressant into the processing region of the semiconductor processing chamber. The methods may further include contacting a substrate with the fluorine-containing precursor and the silicon-containing suppressant. The substrate may include an exposed region of silicon nitride and an exposed region of silicon oxide. The methods may also include selectively etching the exposed region of silicon nitride to the exposed region of silicon oxide.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Prerna Sonthalia Goradia, Yogita Pareek, Geetika Bajaj, Robert Jan Visser, Nitin K. Ingle
  • Publication number: 20200411371
    Abstract: Embodiments of the present disclosure relate to processes for filling trenches. The process includes depositing a first amorphous silicon layer on a surface of a layer and a second amorphous silicon layer in a portion of a trench formed in the layer, and portions of side walls of the trench are exposed. The first amorphous silicon layer is removed. The process further includes depositing a third amorphous silicon layer on the surface of the layer and a fourth amorphous silicon layer on the second amorphous silicon layer. The third amorphous silicon layer is removed. The deposition/removal cyclic processes may be repeated until the trench is filled with amorphous silicon layers. The amorphous silicon layers form a seamless amorphous silicon gap fill in the trench since the amorphous silicon layers are formed from bottom up.
    Type: Application
    Filed: March 7, 2019
    Publication date: December 31, 2020
    Inventors: Xin LIU, Fei WANG, Rui CHENG, Abhijit Basu MALLICK, Robert Jan VISSER
  • Publication number: 20200400990
    Abstract: Embodiments described herein relate to flat optical devices and methods of forming flat optical devices. One embodiment includes a substrate having a first arrangement of a first plurality of pillars formed thereon. The first arrangement of the first plurality of pillars includes pillars having a height h and a lateral distance d, and a gap g corresponding to a distance between adjacent pillars of the first plurality of pillars. An aspect ratio of the gap g to the height h is between about 1:1 and about 1:20. A first encapsulation layer is disposed over the first arrangement of the first plurality of pillars. The first encapsulation layer has a refractive index of about 1.0 to about 1.5. The first encapsulation layer, the substrate, and each of the pillars of the first arrangement define a first space therebetween. The first space has a refractive index of about 1.0 to about 1.5.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Ludovic GODET, Tapashree ROY, Prerna Sonthalia GORADIA, Srobona SEN, Robert Jan VISSER, Nitin DEEPAK, Tapash CHAKRABORTY
  • Publication number: 20200388642
    Abstract: An imaging system and a method of creating composite images are provided. The imaging system includes one or more lens assemblies coupled to a sensor. When reflected light from an object enters the imaging system, incident light on the metalens filter systems creates filtered light, which is turned into composite images by the corresponding sensors. Each metalens filter system focuses the light into a specific wavelength, creating the metalens images. The metalens images are sent to the processor, wherein the processor combines the metalens images into one or more composite images. The metalens images are combined into a composite image, and the composite image has reduced chromatic aberrations.
    Type: Application
    Filed: April 27, 2020
    Publication date: December 10, 2020
    Inventors: Jinxin FU, Yongan XU, Ludovic GODET, Naamah ARGAMAN, Robert Jan VISSER
  • Publication number: 20200301062
    Abstract: Embodiments described herein relate to methods for fabricating waveguide structures utilizing substrates. The waveguide structures are formed having input coupling regions, waveguide regions, and output coupling regions formed from substrates. The regions are formed by imprinting stamps into resists disposed on hard masks formed on surfaces of the substrates to form positive waveguide patterns. Portions of the positive waveguide patterns and the hard masks formed under the portions are removed. The substrates are masked and etched to form gratings in the input coupling regions and the output coupling regions. Residual portions of the positive waveguide patterns and the hard masks disposed under the residual portions are removed to form waveguide structures having input coupling regions, waveguide regions, and output coupling regions formed from substrates.
    Type: Application
    Filed: November 13, 2018
    Publication date: September 24, 2020
    Inventors: Michael Yu-tak YOUNG, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Robert Jan VISSER
  • Patent number: 10714339
    Abstract: Methods of selectively depositing a mask layer on a surface of a patterned substrate and self-aligned patterned masks are provided herein. In one embodiment, a method of selectivity depositing a mask layer includes positioning the patterned substrate on a substrate support in a processing volume of a processing chamber, exposing the surface of the patterned substrate to a parylene monomer gas, forming a first layer on the patterned substrate, wherein the first layer comprises a patterned parylene layer, and depositing a second layer on the first layer. In another embodiment, a self-aligned patterned mask comprises a parylene layer comprising a plurality of parylene features and a plurality of openings, the parylene layer is disposed on a patterned substrate comprising a dielectric layer and a plurality of metal features, the plurality of metal feature comprise a parylene deposition inhibitor metal, and the plurality of parylene features are selectivity formed on dielectric surfaces of the dielectric layer.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: July 14, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Fei Wang, Miaojun Wang, Pramit Manna, Shishi Jiang, Abhijit Basu Mallick, Robert Jan Visser
  • Publication number: 20200219819
    Abstract: Embodiments of the present disclosure generally relate to an optically transparent substrate, comprising a major surface having a peripheral edge region with an orientation feature formed therein, and a texture formed on the peripheral edge region, the texture having an opacity that is greater than an opacity of the major surface.
    Type: Application
    Filed: January 7, 2019
    Publication date: July 9, 2020
    Inventors: Michael Yu-tak Young, Ludovic Godet, Robert Jan Visser
  • Publication number: 20200203423
    Abstract: An apparatus for positioning micro-devices on a destination substrate includes a first support to hold a destination substrate, a second support to provide or hold a transfer body having a surface to receive an adhesive layer, a light source to generate a light beam, a mirror configured to adjustably position the light beam on the adhesive layer on the transfer body, and a controller. The controller is configured to cause the light source to generate the light beam and adjust the mirror to position the light beam on the adhesive layer so as to selectively expose one or more portions of the adhesive layer to create one or more neutralized portions. The transfer body and the destination substrate are moved away from each other and one or more micro-devices corresponding to the one or more neutralized portions of the adhesive layer remain on the destination substrate.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Manivannan Thothadri, Robert Jan Visser
  • Patent number: 10690808
    Abstract: Aspects disclosed herein relate to color filters for display devices, and more specifically to color filters for transmitting or reflecting and recycling colors of light in liquid crystal display devices. In one aspect, a metasurface is formed between two polarizers in an LCD device. In another aspect, a metasurface is formed on a white light guide of an LCD device. The metasurface is formed to transmit desired color(s) of light and to reflect undesired color(s) of light back into the light guide to be recycled and passed through the LCD device elsewhere. Using the color filter to recycle reflected colors of light increases the efficiency of the display device, such as the LCD device.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: June 23, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rutger Meyer Timmerman Thijssen, Robert Jan Visser, Tapashree Roy
  • Publication number: 20200144060
    Abstract: Methods for selective silicon film deposition on a substrate comprising a first surface and a second surface are described. More specifically, the process of depositing a film, treating the film to change some film property and selectively etching the film from various surfaces of the substrate are described. The deposition, treatment and etching can be repeated to selectively deposit a film on one of the two substrate surfaces.
    Type: Application
    Filed: June 6, 2018
    Publication date: May 7, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Rui Cheng, Fei Wang, Abhijit Basu Mallick, Robert Jan Visser
  • Patent number: 10636825
    Abstract: Embodiments described herein generally relate to an apparatus for capturing an image and a photoactive device for that apparatus. In one embodiment, the apparatus for capturing an image includes a lens and a photoactive device. The photoactive device is positioned behind the lens. The photoactive device includes a substrate, one or more photodiodes, and a color filter array. The one or more photodiodes are formed in the substrate. The color filter array is positioned over the substrate. The color filter array has one or more color filters. Each color filter has a radiation receiving surface that is shaped to re-direct radiation to a respective photodiode.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph R. Johnson, Robert Jan Visser, Wayne McMillan, Rutger Meyer Timmerman Thijssen
  • Patent number: 10580826
    Abstract: An apparatus for positioning micro-devices on a destination substrate includes a first support to hold a destination substrate, a second support to provide or hold a transfer body having a surface to receive an adhesive layer, a light source to generate a light beam, a mirror configured to adjustably position the light beam on the adhesive layer on the transfer body, and a controller. The controller is configured to cause the light source to generate the light beam and adjust the mirror to position the light beam on the adhesive layer so as to selectively expose one or more portions of the adhesive layer to create one or more neutralized portions. The transfer body and the destination substrate are moved away from each other and one or more micro-devices corresponding to the one or more neutralized portions of the adhesive layer remain on the destination substrate.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 3, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Manivannan Thothadri, Robert Jan Visser