Patents by Inventor Janusz Rajski

Janusz Rajski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7437640
    Abstract: Methods, apparatus, and systems for diagnosing failing scan cells from compressed test responses are disclosed herein. For example, in one nonlimiting exemplary embodiment, a compactor for compacting test responses in a circuit-under-test is disclosed. In this embodiment, the compactor includes an injector network comprising combinational logic and includes injector-network outputs and injector-network inputs. At least some of the injector-network inputs are logically coupled to two or more injector-network outputs according to respective injector polynomials. The exemplary compactor further comprises a selection circuit that includes selection-circuit outputs coupled to the injector-network inputs and selection-circuit inputs coupled to scan-chain outputs of the circuit-under-test. The selection circuit is configured to selectively route signals from the scan-chain outputs to the injector-network inputs according to one of plural different input configurations.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: October 14, 2008
    Inventors: Janusz Rajski, Grzegorz Mrugalski, Artur Pogiel, Jerzy Tyszer, Chen Wang
  • Patent number: 7437636
    Abstract: Exemplary schemes for multi-frequency at-speed logic Built-In Self Test (BIST) are provided. For example, certain schemes allow at-speed testing of very high frequency integrated circuits controlled by a clock signal generated externally or on-chip. Some of the disclosed schemes are also applicable to testing of circuits with multiple clock domains which can be either the same frequency or different frequency. In particular embodiments, the loading and unloading of scan chains is separated from the at-speed testing of the logic between the respective domains and may be done at a faster or slower frequency than the at-speed testing. In certain embodiments, only the capture cycle is performed at the corresponding system timing. In some embodiments, a programmable capture window makes it possible to test every intra- and inter-domain at-speed without the negative impact of clock skew between clock domains.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: October 14, 2008
    Inventors: Janusz Rajski, Abu Hassan, Robert Thompson, Nagesh Tamarapalli
  • Publication number: 20080216076
    Abstract: Described herein are methods and systems for distributed execution of circuit testing algorithms, or portions thereof. Distributed processing can result in faster processing. Algorithms or portions of algorithms that are independent from each other can be executed in a non-sequential manner (e.g., parallel) over a network of plurality of processors. The network comprises a controlling processor that can allocate tasks to other processors and conduct the execution of some tasks on its own. Dependent algorithms, or portions thereof, can be performed on the controlling processor or one of the controlled processors in a sequential manner. To ensure consistency between the performance of algorithms, or portions thereof, in a distributed manner and a non-distributed manner, the order of processing results from execution is according to some pre-determined order, or according to the order in which the results would have been processed during a non-distributed (e.g., sequential) execution, for instance.
    Type: Application
    Filed: May 8, 2008
    Publication date: September 4, 2008
    Inventors: Jon Udell, Chen Wang, Mark Kassab, Janusz Rajski
  • Publication number: 20080195346
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems used to reduce power consumption during integrated circuit testing. Embodiments of the disclosed technology can be used to provide a low power test scheme and can be integrated with a variety of compression hardware architectures (e.g., an embedded deterministic test (“EDT”) architecture). Among the disclosed embodiments are integrated circuits having programmable test stimuli selectors, programmable scan enable circuits, programmable clock enable circuits, programmable shift enable circuits, and/or programmable reset enable circuits. Exemplary test pattern generation methods that can be used to generate test patterns for use with any of the disclosed embodiments are also disclosed.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 14, 2008
    Inventors: Xijiang Lin, Dariusz Czysz, Mark Kassab, Grzegorz Mrugalski, Janusz Rajski, Jerzy Tyszer
  • Patent number: 7386778
    Abstract: Described herein are methods and systems for distributed execution of circuit testing algorithms, or portions thereof. Distributed processing can result in faster processing. Algorithms or portions of algorithms that are independent from each other can be executed in a non-sequential manner (e.g., parallel) over a network of plurality of processors. The network includes a controlling processor that can allocate tasks to other processors and conduct the execution of some tasks on its own. Dependent algorithms, or portions thereof, can be performed on the controlling processor or one of the controlled processors in a sequential manner.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: June 10, 2008
    Inventors: Jon Udell, Chen Wang, Mark Kassab, Janusz Rajski
  • Publication number: 20080133987
    Abstract: The present disclosure describes embodiments of a compactor for compressing test results in an integrated circuit and methods for using and designing such embodiments. The disclosed compactors can be utilized, for example, as part of any scan-based design. Moreover, any of the disclosed compactors can be designed, simulated, and/or verified in a computer-executed application, such as an electronic-design-automation (“EDA”) software tool. Embodiments of a method for diagnosing faults in the disclosed compactor embodiments are also described.
    Type: Application
    Filed: January 30, 2008
    Publication date: June 5, 2008
    Inventors: Janusz Rajski, Jerzy Tyszer, Chen Wang, Grzegorz Mrugalski, Artur Pogiel
  • Patent number: 7370254
    Abstract: The present disclosure describes embodiments of a compactor for compressing test results in an integrated circuit and methods for using and designing such embodiments. The disclosed compactors can be utilized, for example, as part of any scan-based design. Moreover, any of the disclosed compactors can be designed, simulated, and/or verified in a computer-executed application, such as an electronic-design-automation (“EDA”) software tool. Embodiments of a method for diagnosing faults in the disclosed compactor embodiments are also described.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: May 6, 2008
    Inventors: Janusz Rajski, Jerzy Tyszer, Chen Wang, Grzegorz Mrugalski, Artur Pogiel
  • Publication number: 20080052578
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems used to generate test patterns for testing integrated circuits. Embodiments of the disclosed technology can be used to provide a low power test scheme and can be integrated with a variety of compression hardware architectures (e.g., an embedded deterministic test (“EDT”) environment). Certain embodiments of the disclosed technology can reduce the switching rates, and thus the power dissipation, in scan chains with no hardware modification. Other embodiments use specialized decompression hardware and compression techniques to achieve low power testing.
    Type: Application
    Filed: July 19, 2007
    Publication date: February 28, 2008
    Inventors: Janusz Rajski, Grzegorz Mrugalski, Dariusz Czysz, Jerzy Tyszer
  • Publication number: 20080052586
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems used to generate test patterns for testing integrated circuits. Embodiments of the disclosed technology can be used to provide a low power test scheme and can be integrated with a variety of compression hardware architectures (e.g., an embedded deterministic test (“EDT”) environment). Certain embodiments of the disclosed technology can reduce the switching rates, and thus the power dissipation, in scan chains with no hardware modification. Other embodiments use specialized decompression hardware and compression techniques to achieve low power testing.
    Type: Application
    Filed: July 19, 2007
    Publication date: February 28, 2008
    Inventors: Janusz Rajski, Grzegorz Mrugalski, Dariusz Czysz, Jerzy Tyszer
  • Publication number: 20070300110
    Abstract: A method is disclosed for the automated synthesis of phase shifters. Phase shifters comprise circuits used to remove effects of structural dependencies featured by pseudo-random test pattern generators driving parallel scan chains. Using a concept of duality, the method relates the logical states of linear feedback shift registers (LFSRs) and circuits spacing their inputs to each of the output channels. The method generates a phase shifter network balancing the loads of successive stages of LFSRs and satisfying criteria of reduced linear dependency, channel separation and circuit complexity.
    Type: Application
    Filed: August 27, 2007
    Publication date: December 27, 2007
    Inventors: Janusz Rajski, Jerzy Tyszer, Nagesh Tamarapalli
  • Publication number: 20070294327
    Abstract: Method and apparatus for synthesizing high-performance linear finite state machines (LFSMs) such as linear feedback shift registers (LFSRs) or cellular automata (CA). Given a characteristic polynomial for the circuit, the method obtains an original LFSM circuit such as a type I or type II LFSR. Feedback connections within the original circuit are then determined. Subsequently, a number of transformations that shift the feedback connections can be applied in such a way that properties of the original circuit are preserved in a modified LFSM circuit. In particular, if the original circuit is represented by a primitive characteristic polynomial, the method preserves the maximum-length property of the original circuit in the modified circuit and enables the modified circuit to produce the same m-sequence as the original circuit.
    Type: Application
    Filed: August 20, 2007
    Publication date: December 20, 2007
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20070288822
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Application
    Filed: April 27, 2007
    Publication date: December 13, 2007
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Publication number: 20070283202
    Abstract: Methods, apparatus, and systems for performing fault diagnosis are disclosed herein. In certain disclosed embodiments, methods for diagnosing faults from compressed test responses are provided. For example, in one exemplary embodiment, a circuit description of an at least partially scan-based circuit-under-test and a compactor for compacting test responses captured in the circuit-under-test is received. A transformation function performed by the compactor to the test responses captured in the circuit-under-test is determined. A diagnostic procedure for evaluating uncompressed test responses is modified into a modified diagnostic procedure that incorporates the transformation function therein. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided.
    Type: Application
    Filed: July 2, 2007
    Publication date: December 6, 2007
    Inventors: Wu-Tung Cheng, Kun-Han Tsai, Yu Huang, Nagesh Tamarapalli, Janusz Rajski
  • Patent number: 7302624
    Abstract: Methods, apparatus, and systems for diagnosing failing scan cells from compressed test responses are disclosed herein. For example, in one nonlimiting exemplary embodiment, one or more signatures are received that indicate the presence of one or more errors in one or more corresponding compressed test responses. Scan cells in the circuit-under-test that caused the errors are identified by analyzing the signatures. In this exemplary embodiment, the analysis includes selecting a scan cell candidate that potentially caused an error in a compressed test response based at least partially on a weight value associated with the scan cell candidate, the weight value being indicative of the likelihood that the scan cell candidate caused the error. Tangible computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: November 27, 2007
    Inventors: Janusz Rajski, Grzegorz Mrugalski, Artur Pogiel, Jerzy Tyszer, Chen Wang
  • Publication number: 20070250749
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems used for generating test patterns as may be used as part of a test pattern generation process (for example, for use with an automatic test pattern generator (ATPG) software tool). In one exemplary embodiment, hold probabilities are determined for state elements (for example, scan cells) of a circuit design. A test cube is generated targeting one or more faults in the circuit design. In one particular implementation, the test cube initially comprises specified values that target the one or more faults and further comprises unspecified values. The test cube is modified by specifying at least a portion of the unspecified values with values determined at least in part from the hold probabilities and stored.
    Type: Application
    Filed: April 5, 2007
    Publication date: October 25, 2007
    Inventors: Xijiang Lin, Janusz Rajski
  • Publication number: 20070234163
    Abstract: Disclosed herein are exemplary embodiments of a so-called “X-press” test response compactor. Certain embodiments of the disclosed compactor comprise an overdrive section and scan chain selection logic. Certain embodiments of the disclosed technology offer compaction ratios on the order of 1000×. Exemplary embodiments of the disclosed compactor can maintain about the same coverage and about the same diagnostic resolution as that of conventional scan-based test scenarios. Some embodiments of a scan chain selection scheme can significantly reduce or entirely eliminate unknown states occurring in test responses that enter the compactor. Also disclosed herein are embodiments of on-chip comparator circuits and methods for generating control circuitry for masking selection circuits.
    Type: Application
    Filed: February 20, 2007
    Publication date: October 4, 2007
    Inventors: Nilanjan Mukherjee, Janusz Rajski, Jerzy Tyszer
  • Publication number: 20070234169
    Abstract: Disclosed herein are exemplary embodiments of a so-called “X-press” test response compactor. Certain embodiments of the disclosed compactor comprise an overdrive section and scan chain selection logic. Certain embodiments of the disclosed technology offer compaction ratios on the order of 1000×. Exemplary embodiments of the disclosed compactor can maintain about the same coverage and about the same diagnostic resolution as that of conventional scan-based test scenarios. Some embodiments of a scan chain selection scheme can significantly reduce or entirely eliminate unknown states occurring in test responses that enter the compactor. Also disclosed herein are embodiments of on-chip comparator circuits and methods for generating control circuitry for masking selection circuits.
    Type: Application
    Filed: February 20, 2007
    Publication date: October 4, 2007
    Inventors: Janusz Rajski, Jerzy Tyszer, Grzegorz Mrugalski, Mark Kassab
  • Publication number: 20070234157
    Abstract: Disclosed herein are exemplary embodiments of a so-called “X-press” test response compactor. Certain embodiments of the disclosed compactor comprise an overdrive section and scan chain selection logic. Certain embodiments of the disclosed technology offer compaction ratios on the order of 1000×. Exemplary embodiments of the disclosed compactor can maintain about the same coverage and about the same diagnostic resolution as that of conventional scan-based test scenarios. Some embodiments of a scan chain selection scheme can significantly reduce or entirely eliminate unknown states occurring in test responses that enter the compactor. Also disclosed herein are embodiments of on-chip comparator circuits and methods for generating control circuitry for masking selection circuits.
    Type: Application
    Filed: February 20, 2007
    Publication date: October 4, 2007
    Inventors: Janusz Rajski, Jerzy Tyszer, Grzegorz Mrugalski, Mark Kassab, Wu-Tung Cheng
  • Publication number: 20070220381
    Abstract: Chain or logic diagnosis resolution can be enhanced in the presence of limited failure cycles using embodiments of the various methods, systems, and apparatus described herein. For example, pattern sets can be ordered according to a diagnosis coverage figure, which can be used to measure chain or logic diagnosability of the pattern set. Per-pin based diagnosis techniques can also be used to analyze limited failure data.
    Type: Application
    Filed: August 25, 2006
    Publication date: September 20, 2007
    Inventors: Yu Huang, Wu-Tung Cheng, Nagesh Tamarapalli, Randy Klingenberg, Janusz Rajski
  • Patent number: 7263641
    Abstract: A method is disclosed for the automated synthesis of phase shifters. Phase shifters comprise circuits used to remove effects of structural dependencies featured by pseudo-random test pattern generators driving parallel scan chains. Using a concept of duality, the method relates the logical states of linear feedback shift registers (LFSRs) and circuits spacing their inputs to each of the output channels. The method generates a phase shifter network balancing the loads of successive stages of LFSRs and satisfying criteria of reduced linear dependency, channel separation and circuit complexity.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: August 28, 2007
    Inventors: Janusz Rajski, Jerzy Tyszer, Nagesh Tamarapalli