Patents by Inventor Janusz Rajski

Janusz Rajski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050240887
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems for generating test patterns having an increased ability to detect untargeted defects. In one exemplary embodiment, for instance, one or more deterministic test values for testing targeted faults (e.g., stuck-at faults or bridging faults) in an integrated circuit design are determined. Additional test values that increase detectability of one or more untargeted defects during testing are determined. One or more test patterns are created that include at least a portion of the deterministic test values and at least a portion of the additional test values. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods or comprising test patterns generated by any of the disclosed embodiments are also disclosed.
    Type: Application
    Filed: November 1, 2004
    Publication date: October 27, 2005
    Inventors: Janusz Rajski, Huaxing Tang, Chen Wang
  • Patent number: 6954888
    Abstract: An apparatus and method provide for an arithmetic built-in self test (ABIST) of a number of peripheral devices having parallel scan registers coupled to a processor core, all within an integrated circuit. Using the data paths of the processor core, operating logic generates pseudo-random test patterns for the peripheral devices, employing a mixed congruential generation scheme.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: October 11, 2005
    Inventors: Janusz Rajski, Jerzy Tyszer
  • Publication number: 20050222816
    Abstract: Methods, apparatus, and systems for performing fault diagnosis are disclosed herein. In certain disclosed embodiments, methods for diagnosing faults from compressed test responses are provided. For example, in one exemplary embodiment, a circuit description of an at least partially scan-based circuit-under-test and a compactor for compacting test responses captured in the circuit-under-test is received. A transformation function performed by the compactor to the test responses captured in the circuit-under-test is determined. A diagnostic procedure for evaluating uncompressed test responses is modified into a modified diagnostic procedure that incorporates the transformation function therein. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided.
    Type: Application
    Filed: August 23, 2004
    Publication date: October 6, 2005
    Inventors: Wu-Tung Cheng, Kun-Han Tsai, Yu Huang, Nagesh Tamarapalli, Janusz Rajski
  • Publication number: 20050097419
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Application
    Filed: October 25, 2004
    Publication date: May 5, 2005
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Patent number: 6874109
    Abstract: A method is disclosed for the automated synthesis of phase shifters. Phase shifters comprise circuits used to remove effects of structural dependencies featured by pseudo-random test pattern generators driving parallel scan chains. Using a concept of duality, the method relates the logical states of linear feedback shift registers (LFSRs) and circuits spacing their inputs to each of the output channels. The method generates a phase shifter network balancing the loads of successive stages of LFSRs and satisfying criteria of reduced linear dependency, channel separation and circuit complexity.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: March 29, 2005
    Inventors: Janusz Rajski, Jerzy Tyszer, Nagesh Tamarapalli
  • Publication number: 20050060626
    Abstract: In one embodiment, an IC with an embedded processor core, peripheral devices, and associated multiple scan chains, is provided with microcode that implements an arithmetic pseudo-random number generator and an arithmetic deterministic test vector generator, when executed by the embedded processor core, generates 2-D pseudo-random and deterministic test vectors for testing the peripheral devices respectively. The IC is further provided with microcode that implements an arithmetic test response compactor, which when executed by the embedded processor core, compacts test responses of the peripheral devices into a signature. The IC further includes a test port register and microcode that implements a number of ABIST instructions.
    Type: Application
    Filed: February 10, 2004
    Publication date: March 17, 2005
    Inventors: Janusz Rajski, Jerzy Tyszer
  • Publication number: 20050015688
    Abstract: A method is disclosed for the automated synthesis of phase shifters. Phase shifters comprise circuits used to remove effects of structural dependencies featured by pseudo-random test pattern generators driving parallel scan chains. Using a concept of duality, the method relates the logical states of linear feedback shift registers (LFSRs) and circuits spacing their inputs to each of the output channels. The method generates a phase shifter network balancing the loads of successive stages of LFSRs and satisfying criteria of reduced linear dependency, channel separation and circuit complexity.
    Type: Application
    Filed: August 3, 2004
    Publication date: January 20, 2005
    Inventors: Janusz Rajski, Jerzy Tyszer, Nagesh Tamarapalli
  • Patent number: 6829740
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: December 7, 2004
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20040230884
    Abstract: The present disclosure describes embodiments of a compactor for compressing test results in an integrated circuit and methods for using and designing such embodiments. The disclosed compactors can be utilized, for example, as part of any scan-based design. Moreover, any of the disclosed compactors can be designed, simulated, and/or verified in a computer-executed application, such as an electronic-design-automation (“EDA”) software tool. Embodiments of a method for diagnosing faults in the disclosed compactor embodiments are also described.
    Type: Application
    Filed: February 13, 2004
    Publication date: November 18, 2004
    Inventors: Janusz Rajski, Jerzy Tyszer, Chen Wang, Grzegorz Mrugalski, Artur Pogiel
  • Publication number: 20040172431
    Abstract: Method and apparatus for synthesizing high-performance linear finite state machines (LFSMs) such as linear feedback shift registers (LFSRs) or cellular automata (CA). Given a characteristic polynomial for the circuit, the method obtains an original LFSM circuit such as a type I or type II LFSR. Feedback connections within the original circuit are then determined. Subsequently, a number of transformations that shift the feedback connections can be applied in such a way that properties of the original circuit are preserved in a modified LFSM circuit. In particular, if the original circuit is represented by a primitive characteristic polynomial, the method preserves the maximum-length property of the original circuit in the modified circuit and enables the modified circuit to produce the same m-sequence as the original circuit.
    Type: Application
    Filed: February 17, 2004
    Publication date: September 2, 2004
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20040128599
    Abstract: A novel decompressor/PRPG on a microchip performs both pseudo-random test pattern generation and decompression of deterministic test patterns for a circuit-under-test on the chip. The decompressor/PRPG has two phases of operation. In a pseudo-random phase, the decompressor/PRPG generates pseudo-random test patterns that are applied to scan chains within the circuit-under test. In a deterministic phase, compressed deterministic test patterns from an external tester are applied to the decompressor/PRPG. The patterns are decompressed as they are clocked through the decompressor/PRPG into the scan chains. The decompressor/PRPG thus provides much better fault coverage than a simple PRPG, but without the cost of a complete set of fully-specified deterministic test patterns.
    Type: Application
    Filed: December 15, 2003
    Publication date: July 1, 2004
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 6728901
    Abstract: An apparatus and method provide for an arithmetic built-in self test (ABIST) of a number of peripheral devices having parallel scan registers coupled to a processor core, all within an integrated circuit. Operating logic uses data paths of the processor core to implement the ABIST. In one embodiment, operating logic generates test patterns for the peripheral devices using the data paths of the processor core, loads the test patterns into the parallel scan registers of the peripheral devices, recovers test responses from the parallel scan registers, and compacts responses from the peripheral devices once again using the data paths of the processor core.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: April 27, 2004
    Inventors: Janusz Rajski, Jerzy Tyszer
  • Patent number: 6708192
    Abstract: Method and apparatus for synthesizing high-performance linear finite state machines (LFSMs) such as linear feedback shift registers (LFSRs) or cellular automata (CA). Given a characteristic polynomial for the circuit, the method obtains an original LFSM circuit such as a type I or type II LFSR. Feedback connections within the original circuit are then determined. Subsequently, a number of transformations that shift the feedback connections can be applied in such a way that properties of the original circuit are preserved in a modified LFSM circuit. In particular, if the original circuit is represented by a primitive characteristic polynomial, the method preserves the maximum-length property of the original circuit in the modified circuit and enables the modified circuit to produce the same m-sequence as the original circuit.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: March 16, 2004
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Patent number: 6684358
    Abstract: A decompressor/PRPG on a microchip performs both pseudo-random test pattern generation and decompression of deterministic test patterns for a circuit-under-test on the chip. The decompressor/PRPG has two phases of operation. In a pseudo-random phase, the decompressor/PRPG generates pseudo-random test patterns that are applied to scan chains within the circuit-under test. In a deterministic phase, compressed deterministic test patterns from an external tester are applied to the decompressor/PRPG. The patterns are decompressed as they are clocked through the decompressor/PRPG into the scan chains. The decompressor/PRPG thus provides much better fault coverage than a simple PRPG, but without the cost of a complete set of fully-specified deterministic test patterns.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: January 27, 2004
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 6662327
    Abstract: A method for clustered pattern generation maintains high fault coverage of a circuit under test while it reduces the amount of test data to store by using clusters of correlated test patterns. A test pattern generator stores only a small number of center test vectors which serve as centers of clusters. The generator applies each center test vector to a circuit under test multiple times. However, every time the center vector is shifted into the circuit, some of its positions are complemented. The cluster may have a number of spheres which correspond to test vectors derived with various diffraction probabilities and computed to maximize fault coverage, minimize the total number of clusters, and reduce the test application time. The method also encodes several partially specified center test vectors in scan path using the polarity between scan cells, scan order and waveform generators controlling scan inputs.
    Type: Grant
    Filed: May 13, 1999
    Date of Patent: December 9, 2003
    Inventor: Janusz Rajski
  • Publication number: 20030131298
    Abstract: A method for compressing test patterns to be applied to scan chains in a circuit under test. The method includes generating symbolic expressions that are associated with scan cells within the scan chains. The symbolic expressions are created by assigning variables to bits on external input channels supplied to the circuit under test. Using symbolic simulation, the variables are applied to a decompressor to obtain the symbolic expressions. A test cube is created using a deterministic pattern that assigns values to the scan cells to test faults within the integrated circuit. A set of equations is formulated by equating the assigned values in the test cube to the symbolic expressions associated with the corresponding scan cell. The equations are solved to obtain the compressed test pattern.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 10, 2003
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20030120988
    Abstract: A method for applying test patterns to scan chains in a circuit-under-test. The method includes providing a compressed test pattern of bits; decompressing the compressed test pattern into a decompressed test pattern of bits as the compressed test pattern is being provided; and applying the decompressed test pattern to scan chains of the circuit-under-test. The actions of providing the compressed test pattern, decompressing the compressed test pattern, and applying the decompressed pattern are performed synchronously at the same or different clock rates, depending on the way in which the decompressed bits are to be generated. A circuit that performs the decompression includes a decompressor such as a linear feedbackstate machine adapted to receive a compressed test pattern of bits. The decompressor decompresses the test pattern into a decompressed test pattern of bits as the compressed test pattern is being received.
    Type: Application
    Filed: January 29, 2003
    Publication date: June 26, 2003
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20030115521
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Application
    Filed: January 29, 2003
    Publication date: June 19, 2003
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20030110193
    Abstract: Method and apparatus for synthesizing high-performance linear finite state machines (LFSMs) such as linear feedback shift registers (LFSRs) or cellular automata (CA). Given a characteristic polynomial for the circuit, the method obtains an original LFSM circuit such as a type I or type II LFSR. Feedback connections within the original circuit are then determined. Subsequently, a number of transformations that shift the feedback connections can be applied in such a way that properties of the original circuit are preserved in a modified LFSM circuit. In particular, if the original circuit is represented by a primitive characteristic polynomial, the method preserves the maximum-length property of the original circuit in the modified circuit and enables the modified circuit to produce the same m-sequence as the original circuit.
    Type: Application
    Filed: January 16, 2003
    Publication date: June 12, 2003
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20030097614
    Abstract: A scheme for multi-frequency at-speed logic Built-In Self Test (BIST) is provided. This scheme allows at-speed testing of very high frequency integrated circuits controlled by a clock signal generated externally or on-chip. The scheme is also applicable to testing of circuits with multiple clock domains which can be either the same frequency or different frequency. Scanable memory elements of the digital circuit are connected to define plurality of scan chains. The loading and unloading of scan chains is separated from the at-speed testing of the logic between the respective domains and may be done at a faster or slower frequency than the at-speed testing. The BIST controller, Pseudo-Random Pattern Generator (PRPG) and Multi-input Signature Register (MISR) work at slower frequency than the fastest clock domain. After loading of a new test pattern, a clock suppression circuit allows a scan enable signal to propagate for more that one clock cycle before multiple capture clock is applied.
    Type: Application
    Filed: November 20, 2002
    Publication date: May 22, 2003
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Abu Hassan, Robert Thompson, Nagesh Tamarapalli