Patents by Inventor Janusz Rajski

Janusz Rajski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090327986
    Abstract: Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit designs having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 31, 2009
    Inventors: Dhiraj Goswami, Kun-Han Tsai, Mark Kassab, Janusz Rajski
  • Publication number: 20090300446
    Abstract: Built-in self-test techniques for integrated circuits that address the issue of unknown states. Some implementations use a specialized scan chain selector coupled to a time compactor. The presence of the specialized scan chain selector increases the efficiency in masking X states. Also disclosed are: (1) an architecture of a selector that works with multiple scan chains and time compactors, (2) a method for determining and encoding per cycle scan chain selection masks used subsequently to suppress X states, and (3) a method to handle an over-masking phenomenon.
    Type: Application
    Filed: December 22, 2008
    Publication date: December 3, 2009
    Inventors: Janusz Rajski, Darjusz Czysz, Grzegorz Mrugalski, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20090259900
    Abstract: A method for compressing test patterns to be applied to scan chains in a circuit under test. The method includes generating symbolic expressions that are associated with scan cells within the scan chains. The symbolic expressions are created by assigning variables to bits on external input channels supplied to the circuit under test. Using symbolic simulation, the variables are applied to a decompressor to obtain the symbolic expressions. A test cube is created using a deterministic pattern that assigns values to the scan cells to test faults within the integrated circuit. A set of equations is formulated by equating the assigned values in the test cube to the symbolic expressions associated with the corresponding scan cell. The equations are solved to obtain the compressed test pattern.
    Type: Application
    Filed: March 17, 2009
    Publication date: October 15, 2009
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20090249147
    Abstract: Methods, apparatus, and systems for diagnosing failing scan cells from compressed test responses are disclosed herein. For example, in one nonlimiting exemplary embodiment, at least one error signature comprising multiple bits (including one or more error bits) is received. Plural potential-error-bit-explaining scan cell candidates are evaluated using a search tree. A determination is made as to whether one or more of the evaluated scan cell candidates explain the error bits in the error signature and thereby constitute one or more failing scan cells. An output is provided of any such one or more failing scan cells determined. Tangible computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided. Tangible computer-readable media comprising lists of failing scan cells identified by any of the disclosed methods are also provided.
    Type: Application
    Filed: March 17, 2009
    Publication date: October 1, 2009
    Inventors: Janusz Rajski, Grzegorz Mrugalski, Artur Pogiel, Jerzy Tyszer, Chen Wang
  • Publication number: 20090228749
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 10, 2009
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20090210183
    Abstract: Methods, apparatus, and systems for computing, analyzing, and improving integrated circuit yield and quality are disclosed herein. For example, in one exemplary method disclosed herein, information is received from processing test responses of integrated circuits designed for functional use in electronic devices. In this embodiment, the information is indicative of integrated circuit failures observed during testing of the integrated circuits and of possible yield limiting factors causing the integrated circuit failures. Probabilities that one or more of the possible yield limiting factors in the integrated circuits actually caused the integrated circuit failures are determined by statistically analyzing the received information. The probabilities that one or more possible yield limiting factors actually caused the integrated circuit failures are reported.
    Type: Application
    Filed: March 31, 2009
    Publication date: August 20, 2009
    Inventors: Janusz Rajski, Gang Chen, Martin Keim, Nagesh Tamarapalli, Manish Sharma, Huaxing Tang
  • Publication number: 20090187800
    Abstract: A method is disclosed for the automated synthesis of phase shifters—circuits used to remove effects of structural dependencies featured by pseudo-random test pattern generators driving parallel scan chains. Using a concept of duality, the method relates the logical states of linear feedback shift registers (LFSRs) and circuits spacing their inputs to each of the output channels. The method generates a phase shifter network balancing the loads of successive stages of LFSRs and satisfying criteria of reduced linear dependency, channel separation and circuit complexity.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 23, 2009
    Inventors: Janusz Rajski, Jerzy Tyszer, Nagesh Tamarapalli
  • Publication number: 20090183128
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems for generating test patterns having an increased ability to detect untargeted defects. In one exemplary embodiment, for instance, one or more deterministic test values for testing targeted faults (e.g., stuck-at faults or bridging faults) in an integrated circuit design are determined. Additional test values that increase detectability of one or more untargeted defects during testing are determined. One or more test patterns are created that include at least a portion of the deterministic test values and at least a portion of the additional test values. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods or comprising test patterns generated by any of the disclosed embodiments are also disclosed.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 16, 2009
    Inventors: Janusz Rajski, Huaxing Tang, Chen Wang
  • Publication number: 20090183041
    Abstract: A method for applying test patterns to scan chains in a circuit-under-test. The method includes providing a compressed test pattern of bits; decompressing the compressed test pattern into a decompressed test pattern of bits as the compressed test pattern is being provided; and applying the decompressed test pattern to scan chains of the circuit-under-test. The actions of providing the compressed test pattern, decompressing the compressed test pattern, and applying the decompressed pattern are performed synchronously at the same or different clock rates, depending on the way in which the decompressed bits are to be generated. A circuit that performs the decompression includes a decompressor such as a linear feedbackstate machine adapted to receive a compressed test pattern of bits. The decompressor decompresses the test pattern into a decompressed test pattern of bits as the compressed test pattern is being received.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 16, 2009
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20090177933
    Abstract: A novel decompressor/PRPG on a microchip performs both pseudo-random test pattern generation and decompression of deterministic test patterns for a circuit-under-test on the chip. The decompressor/PRPG has two phases of operation. In a pseudo-random phase, the decompressor/PRPG generates pseudo-random test patterns that are applied to scan chains within the circuit-under test. In a deterministic phase, compressed deterministic test patterns from an external tester are applied to the decompressor/PRPG. The patterns are decompressed as they are clocked through the decompressor/PRPG into the scan chains. The decompressor/PRPG thus provides much better fault coverage than a simple PRPG, but without the cost of a complete set of fully-specified deterministic test patterns.
    Type: Application
    Filed: March 12, 2009
    Publication date: July 9, 2009
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 7555689
    Abstract: Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit design having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 30, 2009
    Inventors: Dhiraj Goswami, Kun-Han Tsai, Mark Kassab, Janusz Rajski
  • Patent number: 7523372
    Abstract: A method is disclosed for the automated synthesis of phase shifters. Phase shifters comprise circuits used to remove effects of structural dependencies featured by pseudo-random test pattern generators driving parallel scan chains. Using a concept of duality, the method relates the logical states of linear feedback shift registers (LFSRs) and circuits spacing their inputs to each of the output channels. The method generates a phase shifter network balancing the loads of successive stages of LFSRs and satisfying criteria of reduced linear dependency, channel separation and circuit complexity.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: April 21, 2009
    Inventors: Janusz Rajski, Jerzy Tyszer, Nagesh Tamarapalli
  • Patent number: 7512508
    Abstract: Methods, apparatus, and systems for computing and analyzing integrated circuit yield and quality are disclosed herein. For example, in one exemplary method disclosed herein information is received from processing test responses of integrated circuits designed for functional use in electronic devices. In this embodiment, the information is indicative of integrated circuit failures observed during testing of the integrated circuits and of possible yield limiting factors causing the integrated circuit failures. Probabilities that one or more of the possible yield limiting factors in the integrated circuits actually caused the integrated circuit failures are determined by statistically analyzing the received information. The probabilities that one or more possible yield limiting factors actually caused the integrated circuit failures are reported. Tangible computer-readable media comprising computer-executable instructions for causing a computer to perform any of the described methods are also disclosed.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: March 31, 2009
    Inventors: Janusz Rajski, Gang Chen, Martin Keim, Nagesh Tamarapalli, Manish Sharma, Huaxing Tang
  • Patent number: 7509600
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems for generating test patterns having an increased ability to detect untargeted defects. In one exemplary embodiment, for instance, one or more deterministic test values for testing targeted faults (e.g., stuck-at faults or bridging faults) in an integrated circuit design are determined. Additional test values that increase detectability of one or more untargeted defects during testing are determined. One or more test patterns are created that include at least a portion of the deterministic test values and at least a portion of the additional test values. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods or comprising test patterns generated by any of the disclosed embodiments are also disclosed.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: March 24, 2009
    Inventors: Janusz Rajski, Huaxing Tang, Chen Wang
  • Patent number: 7509550
    Abstract: Methods, apparatus, and systems for diagnosing failing scan cells from compressed test responses are disclosed herein. For example, in one nonlimiting exemplary embodiment, at least one error signature comprising multiple bits (including one or more error bits) is received. Plural potential-error-bit-explaining scan cell candidates are evaluated using a search tree. A determination is made as to whether one or more of the evaluated scan cell candidates explain the error bits in the error signature and thereby constitute one or more failing scan cells. An output is provided of any such one or more failing scan cells determined. Tangible computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided. Tangible computer-readable media comprising lists of failing scan cells identified by any of the disclosed methods are also provided.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: March 24, 2009
    Inventors: Janusz Rajski, Grzegorz Mrugalski, Artur Pogiel, Jerzy Tyszer, Chen Wang
  • Patent number: 7509546
    Abstract: A method for compressing test patterns to be applied to scan chains in a circuit under test. The method includes generating symbolic expressions that are associated with scan cells within the scan chains. The symbolic expressions are created by assigning variables to bits on external input channels supplied to the circuit under test. Using symbolic simulation, the variables are applied to a decompressor to obtain the symbolic expressions. A test cube is created using a deterministic pattern that assigns values to the scan cells to test faults within the integrated circuit. A set of equations is formulated by equating the assigned values in the test cube to the symbolic expressions associated with the corresponding scan cell. The equations are solved to obtain the compressed test pattern.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 24, 2009
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Patent number: 7506232
    Abstract: A novel decompressor/PRPG on a microchip performs both pseudo-random test pattern generation and decompression of deterministic test patterns for a circuit-under-test on the chip. The decompressor/PRPG has two phases of operation. In a pseudo-random phase, the decompressor/PRPG generates pseudo-random test patterns that are applied to scan chains within the circuit-under test. In a deterministic phase, compressed deterministic test patterns from an external tester are applied to the decompressor/PRPG. The patterns are decompressed as they are clocked through the decompressor/PRPG into the scan chains. The decompressor/PRPG thus provides much better fault coverage than a simple PRPG, but without the cost of a complete set of fully-specified deterministic test patterns.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 17, 2009
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 7500163
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: March 3, 2009
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Patent number: 7478296
    Abstract: A method for applying test patterns to scan chains in a circuit-under-test. The method includes providing a compressed test pattern of bits; decompressing the compressed test pattern into a decompressed test pattern of bits as the compressed test pattern is being provided; and applying the decompressed test pattern to scan chains of the circuit-under-test. The actions of providing the compressed test pattern, decompressing the compressed test pattern, and applying the decompressed pattern are performed synchronously at the same or different clock rates, depending on the way in which the decompressed bits are to be generated. A circuit that performs the decompression includes a decompressor such as a linear feedbackstate machine adapted to receive a compressed test pattern of bits. The decompressor decompresses the test pattern into a decompressed test pattern of bits as the compressed test pattern is being received.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: January 13, 2009
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Publication number: 20080320352
    Abstract: As described herein, circuit testing algorithms, or portions thereof, can be executed in a distributed manner so that their execution can be over a network of processors. In one aspect, the results that are obtained by such distributed execution are ensured to be consistent with the results that would be obtained by executing them in a non-distributed manner. Thus, in one aspect, the algorithms, or portions thereof, have to be made distributable. The algorithms, or portions thereof, are made distributable by isolating any random number generation therewith to be independent of each other. This isolation applies to any random number generation associated with different call instances of the same algorithm as well. In one aspect, the isolation is accomplished by ensuring that the calculation of random number sequences for the algorithms, or portions thereof, is not dependent on random number sequences calculated for the others or between call instances of the same algorithm.
    Type: Application
    Filed: August 25, 2008
    Publication date: December 25, 2008
    Inventors: Jon Udell, Chen Wang, Mark Kassab, Janusz Rajski