Patents by Inventor Jason M. Schaller

Jason M. Schaller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220009106
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a transfer apparatus having a central hub including a shaft extending at a distal end through the transfer region housing into the transfer region. The transfer apparatus may include a lateral translation apparatus coupled with an exterior surface of the transfer region housing, and configured to provide at least one direction of lateral movement of the shaft. The systems may also include an end effector coupled with the shaft within the transfer region. The end effector may include a plurality of arms having a number of arms equal to a number of substrate supports of the plurality of substrate supports in the transfer region.
    Type: Application
    Filed: September 13, 2021
    Publication date: January 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Paul Z. Wirth, Charles T. Carlson, Jason M. Schaller
  • Patent number: 11117265
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a transfer apparatus having a central hub including a shaft extending at a distal end through the transfer region housing into the transfer region. The transfer apparatus may include a lateral translation apparatus coupled with an exterior surface of the transfer region housing, and configured to provide at least one direction of lateral movement of the shaft. The systems may also include an end effector coupled with the shaft within the transfer region. The end effector may include a plurality of arms having a number of arms equal to a number of substrate supports of the plurality of substrate supports in the transfer region.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: September 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Paul Z. Wirth, Charles T. Carlson, Jason M. Schaller
  • Patent number: 11049761
    Abstract: A shutter disk suitable for shield a substrate support in a physical vapor deposition chamber is provided. In one embodiment, the shutter disk includes a disk-shaped body having an outer diameter disposed between a top surface and a bottom surface. The disk-shape body includes a double step connecting the bottom surface to the outer diameter.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: June 29, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, Jason M. Schaller
  • Patent number: 10984990
    Abstract: A plasma processing apparatus is provided including a radio frequency power source; a direct current power source; a chamber enclosing a process volume; and a substrate support assembly disposed in the process volume. The substrate support assembly includes a substrate support having a substrate supporting surface; an electrode disposed in the substrate support; and an interconnect assembly coupling the radio frequency power source and the direct current power source with the electrode.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ramesh Bokka, Jason M. Schaller, Jay D. Pinson, II, Luke Bonecutter
  • Publication number: 20210013084
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210008727
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a transfer apparatus having a central hub including a shaft extending at a distal end through the transfer region housing into the transfer region. The transfer apparatus may include a lateral translation apparatus coupled with an exterior surface of the transfer region housing, and configured to provide at least one direction of lateral movement of the shaft. The systems may also include an end effector coupled with the shaft within the transfer region. The end effector may include a plurality of arms having a number of arms equal to a number of substrate supports of the plurality of substrate supports in the transfer region.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Paul Z. Wirth, Charles T. Carlson, Jason M. Schaller
  • Publication number: 20210013067
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
  • Publication number: 20210013055
    Abstract: Exemplary substrate processing systems may include a factory interface and a load lock coupled with the factory interface. The systems may include a transfer chamber coupled with the load lock. The transfer chamber may include a robot configured to retrieve substrates from the load lock. The systems may include a chamber system positioned adjacent and coupled with the transfer chamber. The chamber system may include a transfer region laterally accessible to the robot. The transfer region may include a plurality of substrate supports disposed about the transfer region. Each substrate support of the plurality of substrate supports may be vertically translatable. The transfer region may also include a transfer apparatus rotatable about a central axis and configured to engage substrates and transfer substrates among the plurality of substrate supports. The chamber system may also include a plurality of processing regions vertically offset and axially aligned with an associated substrate support.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Steve Hongkham, Charles T. Carlson, Tuan A. Nguyen, Swaminathan T. Srinivasan, Khokan Chandra Paul
  • Publication number: 20210013068
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20200386392
    Abstract: A heat exchange arrangement for a light emitting diode (LED) lamp module includes a base portion and a printed circuit board (PCB) portion. The base portion has first and second surfaces, the first surface comprising a plurality of channels. The PCB portion has first and second surfaces, the first surface configured to receive a plurality of LEDs thereon. The second surface of the PCB portion is coupled to the first surface of the base portion. The first surface of the base portion includes a plurality of open channels disposed therein, and the second surface of the PCB portion encloses said plurality of channels when the PCB portion is coupled to the base portion. The plurality of channels form cooling channels forming watertight passages for coolant fluid to flow through.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Robert B. Vopat, Jason M. Schaller, Mitchell DiSanto
  • Patent number: 10854483
    Abstract: Apparatuses for annealing semiconductor substrates, such as a batch processing chamber, are provided herein. The batch processing chamber includes a chamber body enclosing an internal volume, a cassette moveably disposed within the internal volume and a plug coupled to a bottom wall of the cassette. The chamber body has a hole through a bottom wall of the chamber body and is interfaced with one or more heaters operable to maintain the chamber body at a temperature of greater than 290° C. The cassette is configured to be raised to load a plurality of substrates thereon and lowered to seal the internal volume. The plug is configured to move up and down within the internal volume. The plug includes a downward-facing seal configured to engage with a top surface of the bottom wall of the chamber body and close the hole through the bottom wall of the chamber body.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jason M. Schaller, Robert Brent Vopat, Charles T. Carlson, Jeffrey Charles Blahnik, Timothy J. Franklin, David Blahnik, Aaron Webb
  • Patent number: 10854491
    Abstract: A method and apparatus for of improving processing results in a processing chamber by orienting a substrate support relative to a surface within the processing chamber. The method comprising orienting a supporting surface of a substrate support in a first orientation relative to an output surface of a showerhead, where the first orientation of the supporting surface relative to the output surface is not coplanar, and depositing a first layer of material on a substrate disposed on the supporting surface that is oriented in the first orientation.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: December 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Michael Rohrer, Tuan Anh Nguyen, William Tyler Weaver, Gregory John Freeman, Robert Brent Vopat
  • Publication number: 20200375027
    Abstract: A system for heating substrates comprising LEDs arranged in a plurality of concentric circles is disclosed. The system comprises an array of light emitting diodes (LEDs) disposed in a two-dimensional grid, where there are a set of rows, and each row comprises a plurality of LEDs configured in parallel. This configuration is fault tolerant, allowing one or more LEDs to be inoperable, without affecting any of the other LEDs. Further, the LEDs are arranged in concentric circles, allowing uniform heating of the substrate. Additionally, in certain embodiments, the LEDs and signal traces are arranged so that a single layer circuit board may be used. A method of creating this array of LEDs is also disclosed.
    Type: Application
    Filed: May 21, 2019
    Publication date: November 26, 2020
    Inventors: Jason M. Schaller, Robert Brent Vopat, Paul E. Pergande
  • Publication number: 20200279763
    Abstract: Buffer chamber including robots, a carousel and at least one heating module for use with a batch processing chamber are described. Robot configurations for rapid and repeatable movement of wafers into and out of the buffer chamber and cluster tools incorporating the buffer chambers and robots are described.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: William T. Weaver, Jason M. Schaller, Robert Brent Vopat, David Blahnik, Benjamin B. Riordon, Paul E. Pergande
  • Patent number: 10739208
    Abstract: An improved system and method of measuring the temperature of a workpiece being processed is disclosed. The temperature measurement system determines a temperature of a workpiece by measuring the amount of expansion in the workpiece due to thermal expansion. The amount of expansion may be measured using a number of different techniques. In certain embodiments, a light source and a light sensor are disposed on opposite sides of the workpiece. The total intensity of the signal received by the light sensor may be indicative of the dimension of the workpiece. In another embodiment, an optical micrometer may be used. In another embodiment, a light sensor may be used in conjunction with a separate device that measures the position of the workpiece.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: August 11, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Klaus Petry, Jason M. Schaller, Ala Moradian, Morgan D. Evans
  • Patent number: 10699930
    Abstract: Buffer chamber including robots, a carousel and at least one heating module for use with a batch processing chamber are described. Robot configurations for rapid and repeatable movement of wafers into and out of the buffer chamber and cluster tools incorporating the buffer chambers and robots are described.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 30, 2020
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Jason M. Schaller, Robert Brent Vopat, David Blahnik, Benjamin B. Riordon, Paul E. Pergande
  • Publication number: 20200157678
    Abstract: Embodiments of the present disclosure generally relate to lift pin holders, lift pin holder assemblies, and substrate supports containing the lift pin holder and/or the lift pin holder assembly. In one or more embodiments, a lift pin holder contains a cap having a first outside diameter, a base coupled to the cap where the base has a second outside diameter, a first bore formed axially through the cap and the base where the first bore has a sidewall, and a plurality of second bores extending from the sidewall of the first bore to an outer surface of the base where a spring-loaded member is disposed within each of the second bores.
    Type: Application
    Filed: September 26, 2019
    Publication date: May 21, 2020
    Inventors: Jason M. SCHALLER, Jeffrey Charles BLAHNIK, Jeongmin LEE
  • Publication number: 20200118850
    Abstract: Embodiments described herein include integrated systems used to directly monitor a substrate temperature during a plasma enhanced deposition process and methods related thereto. In one embodiment, a substrate support assembly includes a support shaft, a substrate support disposed on the support shaft, and a substrate temperature monitoring system for measuring a temperature of a substrate to be disposed on the substrate support. The substrate temperature monitoring system includes a optical fiber tube, a light guide coupled to the optical fiber tube, and a cooling assembly disposed about a junction of the optical fiber tube and the light guide. Herein, at least a portion of the light guide is disposed in an opening extending through the support shaft and into the substrate support and the cooling assembly maintains the optical fiber tube at a temperature of less than about 100° C. during substrate processing.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Yizhen ZHANG, Rupankar CHOUDHURY, Jay D. PINSON, II, Jason M. SCHALLER, Hanish Kumar PANAVALAPPIL KUMARANKUTTY
  • Publication number: 20200105573
    Abstract: Embodiments described herein generally relate to process chambers with coaxial lift devices. In some embodiments, the device comprises both a bottom bowl lift and a pedestal lift. The bottom bowl lift supports a bottom bowl and is configured to move the bottom bowl into a position that reduces the process volume. The bottom bowl lift is co-axial with the pedestal lift and the bottom bowl lift and the pedestal lift are attached for vacuum operation. The pedestal lift includes multiple actuators to create a dynamic lift mechanism. Both systems complete a nested system such that the bottom bowl lift is adjustable and can close the bottom bowl creating a symmetric and small process volume. The pedestal lift can move independently to its process position and tilt in a desired direction without interference with the bottom bowl lift, increasing film uniformity on a processed substrate.
    Type: Application
    Filed: September 9, 2019
    Publication date: April 2, 2020
    Inventors: Jason M. SCHALLER, Jeffrey Charles BLAHNIK, Amit Kumar BANSAL
  • Patent number: D938373
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Benjamin Riordon, Mitchell DiSanto, Paul Forderhase, Gary Wyka, Jeffrey Hudgens, Paul Z. Wirth, Charles T. Carlson, Siva Chandrasekar, Michael Carrell, Venkata Raghavaiah Chowdhary Kode, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez