Patents by Inventor Jason M. Schaller

Jason M. Schaller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10597779
    Abstract: Apparatus and methods for aligning large susceptors in batch processing chambers are described. Apparatus and methods for controlling the parallelism of a susceptor relative to a gas distribution assembly are also described.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: March 24, 2020
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Robert Brent Vopat, Joseph Yudovsky, Jason M. Schaller
  • Patent number: 10586720
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 10, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, Jr., Robert Mitchell
  • Publication number: 20200075392
    Abstract: A shutter disk suitable for shield a substrate support in a physical vapor deposition chamber is provided. In one embodiment, the shutter disk includes a disk-shaped body having an outer diameter disposed between a top surface and a bottom surface. The disk-shape body includes a double step connecting the bottom surface to the outer diameter.
    Type: Application
    Filed: November 4, 2019
    Publication date: March 5, 2020
    Inventors: Karl M. BROWN, Jason M. SCHALLER
  • Patent number: 10510567
    Abstract: Embodiments described herein include integrated systems used to directly monitor a substrate temperature during a plasma enhanced deposition process and methods related thereto. In one embodiment, a substrate support assembly includes a support shaft, a substrate support disposed on the support shaft, and a substrate temperature monitoring system for measuring a temperature of a substrate to be disposed on the substrate support. The substrate temperature monitoring system includes a optical fiber tube, a light guide coupled to the optical fiber tube, and a cooling assembly disposed about a junction of the optical fiber tube and the light guide. Herein, at least a portion of the light guide is disposed in an opening extending through the support shaft and into the substrate support and the cooling assembly maintains the optical fiber tube at a temperature of less than about 100° C. during substrate processing.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: December 17, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yizhen Zhang, Rupankar Choudhury, Jay D. Pinson, II, Jason M. Schaller, Hanish Kumar Panavalappil Kumarankutty
  • Publication number: 20190375105
    Abstract: Electronic device processing systems may include a mainframe housing having a transfer chamber, a first carousel assembly, a second carousel assembly, a first load lock, a second load lock, and a robot adapted to operate in the transfer chamber to exchange substrates between the first and second carousels and the first and second load locks. The robot may include first and second end effectors operable to extend and/or retract simultaneously or sequentially along substantially co-parallel lines of action. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: William T. Weaver, Malcolm N. Daniel, JR., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Publication number: 20190360100
    Abstract: Embodiments described herein relate to ground path systems providing a shorter and symmetrical path for radio frequency (RF) energy to propagate to a ground to reduce generation of the parasitic plasma. The ground path system bifurcates the processing volume of the chamber to form an inner volume that isolates an outer volume of the processing volume.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 28, 2019
    Inventors: Tuan Anh NGUYEN, Jason M. SCHALLER, Edward P. HAMMOND, IV, David BLAHNIK, Tejas ULAVI, Amit Kumar BANSAL, Sanjeev BALUJA, Jun MA, Juan Carlos ROCHA
  • Publication number: 20190360633
    Abstract: Embodiments described herein relate to a precision dynamic leveling mechanism for repeatedly positioning the pedestal within a process. The precision dynamic leveling mechanism includes bearing assemblies. Bearing assemblies having inner races forced against a pedestal assembly carrier and outer races forced against a guide adaptor provide nominal clearance between the inner races and outer races to allow the inner races and the outer races to slide on each other with minimal or no radial motion.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 28, 2019
    Inventors: Jason M. SCHALLER, Michael P. ROHRER, Tuan Anh NGUYEN
  • Publication number: 20190326138
    Abstract: Embodiments of the present disclosure generally provide apparatus and methods for cooling a substrate support. In one embodiment the present disclosure provides a cooling system for a substrate support. The cooling system includes a substrate support with cooling channels located within the substrate support, a heat exchanger fluidly coupled to the cooling channels, a compressor fluidly coupled to the heat exchanger, a cooling fluid supply source fluidly coupled to the cooling fluid system and a vacuum pump.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 24, 2019
    Inventors: Paul F. FORDERHASE, Luke BONECUTTER, Jason M. SCHALLER
  • Patent number: 10443934
    Abstract: A system for heating substrates while being transported between the load lock and the platen is disclosed. The system comprises an array of light emitting diodes (LEDs) disposed above the alignment station. The LEDs may be GaN or GaP LEDs, which emit light at a wavelength which is readily absorbed by silicon, thus efficiently and quickly heating the substrate. The LEDs may be arranged so that the rotation of the substrate during alignment results in a uniform temperature profile of the substrate. Further, heating during alignment may also increase throughput and eliminate preheating stations that are currently associated with the processing chamber.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: October 15, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan D. Evans, Jason M. Schaller, D. Jeffrey Lischer, Ala Moradian, William T. Weaver, Robert Brent Vopat
  • Patent number: 10427303
    Abstract: Electronic device processing systems may include a mainframe housing having a transfer chamber, a first carousel assembly, a second carousel assembly, a first load lock, a second load lock, and a robot adapted to operate in the transfer chamber to exchange substrates between the first and second carousels and the first and second load locks. The robot may include first and second end effectors operable to extend and/or retract simultaneously or sequentially along substantially co-parallel lines of action. Methods and multi-axis robots for transporting substrates are described, as are numerous other aspects.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Malcolm N. Daniel, Jr., Robert B. Vopat, Jason M. Schaller, Jacob Newman, Dinesh Kanawade, Andrew J. Constant, Stephen C. Hickerson, Jeffrey C. Hudgens, Marvin L. Freeman
  • Publication number: 20190259638
    Abstract: Wafer cassettes and methods of use that provide heating a cooling to a plurality of wafers to decrease time between wafer switching in a processing chamber. Wafers are supported on a wafer lift which can move all wafers together or on independent lift pins which can move individual wafers for heating and cooling.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Inventors: Jason M. Schaller, Robert Brent Vopat, Paul E. Pergande, Benjamin B. Riordon, David Blahnik, William T. Weaver
  • Publication number: 20190229004
    Abstract: A method and apparatus for of improving processing results in a processing chamber by orienting a substrate support relative to a surface within the processing chamber.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 25, 2019
    Inventors: Jason M. SCHALLER, Michael ROHRER, Tuan Anh NGUYEN, William Tyler WEAVER, Gregory John FREEMAN, Robert Brent VOPAT
  • Publication number: 20190198368
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, JR., Robert Mitchell
  • Publication number: 20190170591
    Abstract: An improved system and method of measuring the temperature of a workpiece being processed is disclosed. The temperature measurement system determines a temperature of a workpiece by measuring the amount of expansion in the workpiece due to thermal expansion. The amount of expansion may be measured using a number of different techniques. In certain embodiments, a light source and a light sensor are disposed on opposite sides of the workpiece. The total intensity of the signal received by the light sensor may be indicative of the dimension of the workpiece. In another embodiment, an optical micrometer may be used. In another embodiment, a light sensor may be used in conjunction with a separate device that measures the position of the workpiece.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 6, 2019
    Inventors: Klaus Petry, Jason M. Schaller, Ala Moradian, Morgan D. Evans
  • Publication number: 20190148186
    Abstract: Apparatuses for annealing semiconductor substrates, such as a batch processing chamber, are provided herein. The batch processing chamber includes a chamber body enclosing an internal volume, a cassette moveably disposed within the internal volume and a plug coupled to a bottom wall of the cassette. The chamber body has a hole through a bottom wall of the chamber body and is interfaced with one or more heaters operable to maintain the chamber body at a temperature of greater than 290° C. The cassette is configured to be raised to load a plurality of substrates thereon and lowered to seal the internal volume. The plug is configured to move up and down within the internal volume. The plug includes a downward-facing seal configured to engage with a top surface of the bottom wall of the chamber body and close the hole through the bottom wall of the chamber body.
    Type: Application
    Filed: October 11, 2018
    Publication date: May 16, 2019
    Inventors: Jason M. SCHALLER, Robert Brent VOPAT, Charles T. CARLSON, Jeffrey Charles BLAHNIK, Timothy J. FRANKLIN, David BLAHNIK, Aaron WEBB
  • Patent number: 10283379
    Abstract: Apparatus and methods for heating and cooling a plurality of substrate wafers are provided. LED lamps are positioned against the back sides of a plurality of cold plates. In some embodiments, wafers are supported on a wafer lift which can move all wafers together. In some embodiments, wafers are supported on independent lift pins which can move individual wafers for heating and cooling. Some embodiments of the disclosure provide for decreased time between wafer switching in a processing chamber.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 7, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Robert Brent Vopat, Paul E. Pergande, Benjamin B. Riordon, David T. Blahnik, William T. Weaver
  • Patent number: 10256125
    Abstract: Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: William T. Weaver, Joseph Yudovsky, Jason M. Schaller, Jeffrey C. Blahnik, Robert B. Vopat, Malcolm N. Daniel, Jr., Robert Mitchell
  • Patent number: 10249525
    Abstract: A method and apparatus for of improving processing results in a processing chamber by orienting a substrate support relative to a surface within the processing chamber. The method comprising orienting a supporting surface of a substrate support in a first orientation relative to an output surface of a showerhead, where the first orientation of the supporting surface relative to the output surface is not coplanar, and depositing a first layer of material on a substrate disposed on the supporting surface that is oriented in the first orientation.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 2, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jason M. Schaller, Michael Paul Rohrer, Tuan Anh Nguyen, William Tyler Weaver, Gregory John Freeman, Robert Brent Vopat
  • Publication number: 20190019708
    Abstract: Buffer chamber including robots, a carousel and at least one heating module for use with a batch processing chamber are described. Robot configurations for rapid and repeatable movement of wafers into and out of the buffer chamber and cluster tools incorporating the buffer chambers and robots are described.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 17, 2019
    Inventors: William T. Weaver, Jason M. Schaller, Robert Brent Vopat, David Blahnik, Benjamin B. Riordon, Paul E. Pergande
  • Publication number: 20180323093
    Abstract: Embodiments described herein include integrated systems used to directly monitor a substrate temperature during a plasma enhanced deposition process and methods related thereto. In one embodiment, a substrate support assembly includes a support shaft, a substrate support disposed on the support shaft, and a substrate temperature monitoring system for measuring a temperature of a substrate to be disposed on the substrate support. The substrate temperature monitoring system includes a optical fiber tube, a light guide coupled to the optical fiber tube, and a cooling assembly disposed about a junction of the optical fiber tube and the light guide. Herein, at least a portion of the light guide is disposed in an opening extending through the support shaft and into the substrate support and the cooling assembly maintains the optical fiber tube at a temperature of less than about 100° C. during substrate processing.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 8, 2018
    Inventors: Yizhen ZHANG, Rupankar CHOUDHURY, Jay D. PINSON, II, Jason M. SCHALLER, Hanish Kumar PANAVALAPPIL KUMARANKUTTY