Patents by Inventor Jeehwan Kim

Jeehwan Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10898138
    Abstract: Exemplary embodiments relate to a skin-adherable flexible patch including a flexible patch layer having one surface that can adhere to skin and configured to support a micro scale semiconductor device; and a plurality of holes passing through from one surface of the flexible patch to the other surface of the flexible patch, and a method for manufacturing the flexible patch.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 26, 2021
    Assignees: AMOREPACIFIC CORPORATION, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Jiyeon Han, Han-Wool Yeun, Eunjoo Kim, Jeehwan Kim
  • Patent number: 10903073
    Abstract: A method of manufacturing a semiconductor device includes forming a first epitaxial layer on a first substrate. The first substrate includes a first semiconductor material having a first lattice constant and the first epitaxial layer includes a second semiconductor material having a second lattice constant different from the first lattice constant. The method also includes disposing a graphene layer on the first epitaxial layer and forming a second epitaxial layer comprising the second semiconductor material on the graphene layer. This method can increase the substrate reusability, increase the release rate of functional layers, and realize precise control of release thickness.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: January 26, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Jeehwan Kim, Kyusang Lee
  • Patent number: 10892407
    Abstract: Electrical switching technologies employ the otherwise undesirable line defect in crystalline materials to form conductive filaments. A switching cell includes a crystalline layer disposed between an active electrode and another electrode. The crystalline layer has at least one channel, such as a line defect, extending from one surface of the crystalline layer to the other surface. Upon application of a voltage on the two electrodes, the active electrode provides metal ions that can migrate from the active electrode to the other electrode along the line defect, thereby forming a conductive filament. The switching cell can precisely locate the conductive filament within the line defect and increase the device-to-device switching uniformity.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Jeehwan Kim, Shinhyun Choi
  • Patent number: 10868608
    Abstract: The disclosure relates to a communication scheme and system for the convergence of a 5G communication system for supporting a higher a data transfer rate after the 4G system with the IoT technology. The disclosure may be applied to intelligence services (e.g., a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, security and safety-related services) based on the 5G communication technology and IoT-related technology. The disclosure discloses a method and apparatus for a beam association between DL/UL.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: December 15, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeehwan Noh, Taeyoung Kim, Hyunil Yoo
  • Patent number: 10862649
    Abstract: A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for internet of things (IoT) is provided. The communication method includes applying to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure relates to a method and an apparatus for allocating a phase tracking reference signal (PTRS) for estimating and compensating for phase distortion due to phase noise, Doppler effect, or synchronization error.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 8, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunil Yoo, Hyungju Nam, Jaewon Kim, Jeehwan Noh
  • Patent number: 10833187
    Abstract: A semiconductor device includes a substrate and a p-doped layer including a doped III-V material on the substrate. An n-type material is formed on or in the p-doped layer. The n-type material includes an oxide of a II-VI material. An oxygen scavenging interlayer is formed on the n-type material. An aluminum contact is formed in direct contact with the oxygen scavenging interlayer to form an electronic device.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, Wencong Liu, Devendra K. Sadana
  • Patent number: 10833175
    Abstract: A semiconductor device that includes a fin structure having a porous core, and a relaxed semiconductor layer present on the porous core. The semiconductor device may further include a strained semiconductor layer that is substantially free of defects that is present on the strained semiconductor layer. A gate structure may be present on a channel region of the fin structure, and source and drain regions may be present on opposing sides of the gate structure.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Kangguo Cheng, Jeehwan Kim, Alexander Reznicek, Devendra K. Sadana
  • Patent number: 10820331
    Abstract: The present disclosure relates to a communication scheme and system for converging a 5th generation (5G) communication system for supporting a data rate higher than that of a 4th generation (4G) system with an internet of things (IoT) technology. The present disclosure is applicable to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars, connected cars, health care, digital education, retails, and security and safety-related services) based on the 5G communication technology and the IoT-related technology. The present disclosure relates to a radio network technology for use in a beamforming-based cellular system. A method for compensating phase noise by a user equipment (UE) is provided.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 27, 2020
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Hyunil Yoo, Hyungju Nam, Jeehwan Noh, Yongok Kim, Taeyoung Kim, Jiyun Seol
  • Publication number: 20200329466
    Abstract: The present disclosure relates to a communication technique for converging an IoT technology with a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The present disclosure may be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, a security and security related service, or the like) on the basis of a 5G communication technology and an IoT related technology.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventors: Hyunil YOO, Taeyoung KIM, Jeehwan NOH
  • Patent number: 10804166
    Abstract: A method for forming CMOS devices includes masking a first portion of a tensile-strained silicon layer of a SOI substrate, doping a second portion of the layer outside the first portion and growing an undoped silicon layer on the doped portion and the first portion. The undoped silicon layer becomes tensile-strained. Strain in the undoped silicon layer over the doped portion is relaxed by converting the doped portion to a porous silicon to form a relaxed silicon layer. The porous silicon is converted to an oxide. A SiGe layer is grown and oxidized to convert the relaxed silicon layer to a compressed SiGe layer. Fins are etched in the first portion from the tensile-strained silicon layer and the undoped silicon layer and in the second portion from the compressed SiGe layer.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: October 13, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Jeehwan Kim, Juntao Li, Devendra K. Sadana
  • Publication number: 20200322010
    Abstract: A method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of Things (IoT) are provided. The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method for transmitting and receiving a phase compensation reference signal (PCRS) to compensate for phase noise. The method may determine whether a first precoding is applied to a demodulation reference signal (DMRS) and the PCRS to be transmitted to a terminal. The base station may also generate the DMRS and the PCRS, based on whether the first precoding is applied to the DMRS and the PCRS, and transmit data, the DMRS, and the PCRS to the terminal.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Jaewon Kim, Jeehwan Noh, Hyunseok Ryu, Hyukmin Son, Hyunkyu Yu, Hyunil Yoo
  • Publication number: 20200286786
    Abstract: Embodiments including apparatus, systems, and methods for nanofabrication are provided. In one example, a method of manufacturing a semiconductor device includes forming a two-dimensional (2D) layer comprising a 2D material on a first substrate and forming a plurality of holes in the 2D layer to create a patterned 2D layer. The method also includes forming a single-crystalline film on the patterned 2D layer and transferring the single-crystalline film onto a second substrate.
    Type: Application
    Filed: November 14, 2018
    Publication date: September 10, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Jeehwan Kim, Sanghoon Bae, Yunjo Kim
  • Patent number: 10770289
    Abstract: A graphene-based layer transfer (GBLT) technique is disclosed. In this approach, a device layer including a III-V semiconductor, Si, Ge, III-N semiconductor, SiC, SiGe, or II-VI semiconductor is fabricated on a graphene layer, which in turn is disposed on a substrate. The graphene layer or the substrate can be lattice-matched with the device layer to reduce defect in the device layer. The fabricated device layer is then removed from the substrate via, for example, a stressor attached to the device layer. In GBLT, the graphene layer serves as a reusable and universal platform for growing device layers and also serves a release layer that allows fast, precise, and repeatable release at the graphene surface.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Massachusetts Institute of Technology
    Inventor: Jeehwan Kim
  • Patent number: 10756220
    Abstract: A photovoltaic device includes a substrate having a plurality of hole shapes formed therein. The plurality of hole shapes each have a hole opening extending from a first surface and narrowing with depth into the substrate. The plurality of hole shapes form a hole pattern on the first surface, and the hole pattern includes flat areas separating the hole shapes on the first surface. A photovoltaic device stack is formed on the first surface and extends into the hole shapes. Methods are also provided.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10741706
    Abstract: A photovoltaic device includes a substrate layer having a plurality of three-dimensional structures formed therein providing a textured profile. A first electrode is formed over the substrate layer and extends over the three-dimensional structures including non-planar surfaces. The first electrode has a thickness configured to maintain the textured profile, and the first electrode includes a transparent conductive material having a dopant metal activated within the transparent conductive material. A continuous photovoltaic stack is conformally formed over the first electrode, and a second electrode is formed on the photovoltaic stack.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10735983
    Abstract: The present disclosure relates to a fifth generation (5G) or pre-5G system to be provided to support a higher data transmission rate since fourth generation (4G) communication systems like long term evolution (LTE). A system and method for compensating phase noise of a terminal in support of the system is provided. The method includes measuring first channel state information (CSI) using a reference signal transmitted from a base station, estimating second CSI from the first CSI using a first type reference signal for compensating a common phase error (CPE) and a second type reference signal for compensating the CPE and inter carrier interference (ICI), and feeding back the estimated second CSI to the base station.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: August 4, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunil Yoo, Jaewon Kim, Jeehwan Noh, Hyunseok Ryu, Jiyun Seol, Hyukmin Son, Hyunkyu Yu
  • Patent number: 10727367
    Abstract: A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Publication number: 20200221348
    Abstract: The disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). Provided are an apparatus and a method for determining a bandwidth in a wireless communication system. A method of operating a base station (BS) in a wireless communication system includes: receiving information on a bandwidth supporting capability of a terminal from the terminal; transmitting information on at least one candidate bandwidth corresponding to the bandwidth supporting capability to the terminal; and transmitting information indicating a utilization bandwidth of the terminal among the at least one candidate bandwidth to the terminal. Accordingly, it is possible to reduce power consumption of the terminal and overhead for a bandwidth indication.
    Type: Application
    Filed: July 25, 2018
    Publication date: July 9, 2020
    Inventors: Chaehee LIM, Yongok KIM, Chanhong KIM, Jeehwan NOH, Min SAGONG, Yeohun YUN
  • Publication number: 20200221461
    Abstract: A communication method and a system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with an internet of things (IoT) technology are provided, which may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an apparatus for transmitting a reference signal are provided. The method includes receiving, from a base station, a first parameter and a second parameter associated with a sound reference signal (SRS) by higher layer signaling, identifying a bandwidth for the SRS based on the first parameter and the second parameter, and transmitting, to the base station, the SRS based on the identified bandwidth for the SRS.
    Type: Application
    Filed: March 18, 2020
    Publication date: July 9, 2020
    Inventors: Hyunil YOO, Taeyoung KIM, Cheolkyu SHIN, Hyungju NAM, Jeehwan NOH
  • Patent number: 10701684
    Abstract: The present disclosure relates to a communication technique for converging an IoT technology with a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The present disclosure may be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, a security and security related service, or the like) on the basis of a 5G communication technology and an IoT related technology.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 30, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunil Yoo, Taeyoung Kim, Jeehwan Noh