Patents by Inventor Jeehwan Kim

Jeehwan Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10833187
    Abstract: A semiconductor device includes a substrate and a p-doped layer including a doped III-V material on the substrate. An n-type material is formed on or in the p-doped layer. The n-type material includes an oxide of a II-VI material. An oxygen scavenging interlayer is formed on the n-type material. An aluminum contact is formed in direct contact with the oxygen scavenging interlayer to form an electronic device.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, Wencong Liu, Devendra K. Sadana
  • Patent number: 10804166
    Abstract: A method for forming CMOS devices includes masking a first portion of a tensile-strained silicon layer of a SOI substrate, doping a second portion of the layer outside the first portion and growing an undoped silicon layer on the doped portion and the first portion. The undoped silicon layer becomes tensile-strained. Strain in the undoped silicon layer over the doped portion is relaxed by converting the doped portion to a porous silicon to form a relaxed silicon layer. The porous silicon is converted to an oxide. A SiGe layer is grown and oxidized to convert the relaxed silicon layer to a compressed SiGe layer. Fins are etched in the first portion from the tensile-strained silicon layer and the undoped silicon layer and in the second portion from the compressed SiGe layer.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: October 13, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Jeehwan Kim, Juntao Li, Devendra K. Sadana
  • Publication number: 20200286786
    Abstract: Embodiments including apparatus, systems, and methods for nanofabrication are provided. In one example, a method of manufacturing a semiconductor device includes forming a two-dimensional (2D) layer comprising a 2D material on a first substrate and forming a plurality of holes in the 2D layer to create a patterned 2D layer. The method also includes forming a single-crystalline film on the patterned 2D layer and transferring the single-crystalline film onto a second substrate.
    Type: Application
    Filed: November 14, 2018
    Publication date: September 10, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Jeehwan Kim, Sanghoon Bae, Yunjo Kim
  • Patent number: 10770289
    Abstract: A graphene-based layer transfer (GBLT) technique is disclosed. In this approach, a device layer including a III-V semiconductor, Si, Ge, III-N semiconductor, SiC, SiGe, or II-VI semiconductor is fabricated on a graphene layer, which in turn is disposed on a substrate. The graphene layer or the substrate can be lattice-matched with the device layer to reduce defect in the device layer. The fabricated device layer is then removed from the substrate via, for example, a stressor attached to the device layer. In GBLT, the graphene layer serves as a reusable and universal platform for growing device layers and also serves a release layer that allows fast, precise, and repeatable release at the graphene surface.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Massachusetts Institute of Technology
    Inventor: Jeehwan Kim
  • Patent number: 10756220
    Abstract: A photovoltaic device includes a substrate having a plurality of hole shapes formed therein. The plurality of hole shapes each have a hole opening extending from a first surface and narrowing with depth into the substrate. The plurality of hole shapes form a hole pattern on the first surface, and the hole pattern includes flat areas separating the hole shapes on the first surface. A photovoltaic device stack is formed on the first surface and extends into the hole shapes. Methods are also provided.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10741706
    Abstract: A photovoltaic device includes a substrate layer having a plurality of three-dimensional structures formed therein providing a textured profile. A first electrode is formed over the substrate layer and extends over the three-dimensional structures including non-planar surfaces. The first electrode has a thickness configured to maintain the textured profile, and the first electrode includes a transparent conductive material having a dopant metal activated within the transparent conductive material. A continuous photovoltaic stack is conformally formed over the first electrode, and a second electrode is formed on the photovoltaic stack.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10727367
    Abstract: A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Publication number: 20200187848
    Abstract: Exemplary embodiments relate to a skin-adherable electronic device including a semiconductor circuit unit including a circuit element including an electrode and an interconnect, and a semiconductor device including an insulating layer and an active layer; and a flexible patch that can adhere to skin and including a plurality of through-holes, wherein the insulating layer includes a plurality of through-holes corresponding to the plurality of through-holes of the flexible patch, and a method of manufacturing the same. When the active layer is made of a piezoelectric material, the electronic device may be used as a skin sensor that can acquire skin deformation and/or elasticity information.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Jiyeon HAN, Han-Wool YEUN, Eunjoo KIM, Jeehwan KIM
  • Publication number: 20200187858
    Abstract: Exemplary embodiments relate to a skin-adherable flexible patch including a flexible patch layer having one surface that can adhere to skin and configured to support a micro scale semiconductor device; and a plurality of holes passing through from one surface of the flexible patch to the other surface of the flexible patch, and a method for manufacturing the flexible patch.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Jiyeon HAN, Han-Wool YEUN, Eunjoo KIM, Jeehwan KIM
  • Patent number: 10686090
    Abstract: A photovoltaic device and method for fabrication include multijunction cells, each cell having a material grown independently from the other and including different band gap energies. An interface is disposed between the cells and configured to wafer bond the cells wherein the cells are configured to be adjacent without regard to lattice mismatch.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Jeehwan Kim, Devendra K. Sadana, Kuen-Ting Shiu, Norma E. Sosa Cortes
  • Publication number: 20200176445
    Abstract: A semiconductor device that includes a fin structure of a type III-V semiconductor material that is substantially free of defects, and has sidewalls that are substantially free of roughness caused by epitaxially growing the type III-V semiconductor material abutting a dielectric material. The semiconductor device further includes a gate structure present on a channel portion of the fin structure; and a source region and a drain region present on opposing sides of the gate structure.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Kangguo Cheng, Jeehwan Kim
  • Patent number: 10672932
    Abstract: A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: June 2, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tze-Chiang Chen, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Publication number: 20200152809
    Abstract: A device and method for fabricating a photovoltaic device includes forming a double layer transparent conductive oxide on a transparent substrate. The double layer transparent conductive oxide includes forming a doped electrode layer on the substrate, and forming a buffer layer on the doped electrode layer. The buffer layer includes an undoped or p-type doped intrinsic form of a same material as the doped electrode layer. A light-absorbing semiconductor structure includes a p-type semiconductor layer on the buffer layer, an intrinsic layer and an n-type semiconductor layer.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: SHUN-MING CHEN, CHIEN-CHIH HUANG, JOEL P. DESOUZA, AUGUSTIN J. HONG, JEEHWAN KIM, CHIEN-YEH KU, DEVENDRA K. SADANA, CHUAN-WEN WANG
  • Patent number: 10651273
    Abstract: A semiconductor device includes an extremely thin semiconductor-on-insulator substrate (ETSOI) having a base substrate, a thin semiconductor layer and a buried dielectric therebetween. A device channel is formed in the thin semiconductor layer. Source and drain regions are formed at opposing positions relative to the device channel. The source and drain regions include an n-type material deposited on the buried dielectric within a thickness of the thin semiconductor layer. A gate structure is formed over the device channel.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Jeehwan Kim, Devendra K. Sadana
  • Publication number: 20200144445
    Abstract: An optoelectronic device that includes a germanium containing buffer layer atop a silicon containing substrate, and a first distributed Bragg reflector stack of III-V semiconductor material layers on the buffer layer. The optoelectronic device further includes an active layer of III-V semiconductor material present on the first distributed Bragg reflector stack, wherein a difference in lattice dimension between the active layer and the first distributed brag reflector stack induces a strain in the active layer. A second distributed Bragg reflector stack of III-V semiconductor material layers having a may be present on the active layer.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana
  • Patent number: 10643996
    Abstract: A semiconductor device that includes a fin structure of a type III-V semiconductor material that is substantially free of defects, and has sidewalls that are substantially free of roughness caused by epitaxially growing the type III-V semiconductor material abutting a dielectric material. The semiconductor device further includes a gate structure present on a channel portion of the fin structure; and a source region and a drain region present on opposing sides of the gate structure.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: May 5, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Jeehwan Kim
  • Publication number: 20200135962
    Abstract: A method of fabricating a photovoltaic (PV) device includes forming a release layer comprising a two-dimensional (2D) material on a first substrate having a first lattice constant and epitaxially growing a first PV layer on the release layer using the first substrate as a seed. The first PV layer has a second lattice constant substantially equal to the first lattice constant of the first substrate. The method also includes removing the first PV layer from the release layer and epitaxially growing a second PV layer on the release layer.
    Type: Application
    Filed: April 20, 2018
    Publication date: April 30, 2020
    Applicants: Massachusetts Institute of Technology, Khalifa University of Science and Technology
    Inventors: Kyusang Lee, Jeehwan Kim, Ibraheem Almansouri
  • Patent number: 10615161
    Abstract: A semiconductor device that includes a fin structure of a type III-V semiconductor material that is substantially free of defects, and has sidewalls that are substantially free of roughness caused by epitaxially growing the type III-V semiconductor material abutting a dielectric material. The semiconductor device further includes a gate structure present on a channel portion of the fin structure; and a source region and a drain region present on opposing sides of the gate structure.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Jeehwan Kim
  • Publication number: 20200105964
    Abstract: A photovoltaic device includes an absorber layer having a back contact formed on the absorber layer, the back contact having an exposed surface free from a substrate. It further includes a top contact formed in contact with a transparent conductive layer opposite the back contact and a stressor layer forming a superstrate on the absorber layer opposite the back contact.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Oki Gunawan, Homare Hiroi, Jeehwan Kim, David B. Mitzi, Hiroki Sugimoto
  • Patent number: 10593815
    Abstract: A device and method for fabricating a photovoltaic device includes forming a double layer transparent conductive oxide on a transparent substrate. The double layer transparent conductive oxide includes forming a doped electrode layer on the substrate, and forming a buffer layer on the doped electrode layer. The buffer layer includes an undoped or p-type doped intrinsic form of a same material as the doped electrode layer. A light-absorbing semiconductor structure includes a p-type semiconductor layer on the buffer layer, an intrinsic layer and an n-type semiconductor layer.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: March 17, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, BAY ZU PRECISION CO., LTD
    Inventors: Shun-Ming Chen, Chien-Chih Huang, Joel P. Desouza, Augustin J. Hong, Jeehwan Kim, Chien-Yeh Ku, Devendra K. Sadana, Chuan-Wen Wang