Patents by Inventor Jeffrey B. Shealy

Jeffrey B. Shealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190020324
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20190020327
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, Shawn R. GIBB, David M. AICHELE
  • Publication number: 20190020328
    Abstract: A front end module (FEM) for a 5.6 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.6 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.6 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.6 GHz PA, a 5.6 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, David M. Aichele
  • Publication number: 20180367113
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, Shawn R. GIBB, Mary WINTERS, Ramakrishna VETURY
  • Publication number: 20180342999
    Abstract: A method of manufacture and structure for an acoustic resonator device having a hybrid piezoelectric stack with a strained single crystal layer and a thermally-treated polycrystalline layer. The method can include forming a strained single crystal piezoelectric layer overlying the nucleation layer and having a strain condition and piezoelectric layer parameters, wherein the strain condition is modulated by nucleation growth parameters and piezoelectric layer parameters to improve one or more piezoelectric properties of the strained single crystal piezoelectric layer. Further, the method can include forming a polycrystalline piezoelectric layer overlying the strained single crystal piezoelectric layer, and performing a thermal treatment on the polycrystalline piezoelectric layer to form a recrystallized polycrystalline piezoelectric layer. The resulting device with this hybrid piezoelectric stack exhibits improved electromechanical coupling and wide bandwidth performance.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 29, 2018
    Inventors: Shawn R. GIBB, Craig MOE, Jeff LEATHERSICH, Steven DENBAARS, Jeffrey B. SHEALY
  • Publication number: 20180309425
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: June 27, 2018
    Publication date: October 25, 2018
    Applicant: Akoustis, Inc.
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, Shawn R. GIBB, Mary WINTERS, Ramakrishna VETURY
  • Publication number: 20180309422
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 25, 2018
    Inventors: Jeffrey B. SHEALY, Michael HODGE, Rohan W. HOULDEN, Shawn R. GIBB, Mary WINTERS, Ramakrishna VETURY, David AICHELE
  • Patent number: 10110190
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110189
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110188
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10084588
    Abstract: A mobile communication system. The system has a housing comprising an interior region and an exterior region and a processing device provided within an interior region of the housing. The system has an rf transmit module coupled to the processing device, and configured on a transmit path. The system has a transmit filter provided within the rf transmit module. In an example, the transmit filter comprises a diplexer filter comprising a single crystal acoustic resonator device.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: September 25, 2018
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Publication number: 20180167052
    Abstract: A substrate structure for an acoustic resonator device. The substrate has a substrate member comprising a plurality of support members configured to form an array structure. In an example, the substrate member has an upper region, and optionally, has a plurality of recessed regions configured by the support members. The substrate has a thickness of single crystal piezo material formed overlying the upper region. In an example, the thickness of single crystal piezo material has a first surface region and a second surface region opposite of the first surface region.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventor: Jeffrey B. SHEALY
  • Publication number: 20180145652
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices provided on a silicon and carbide bearing material, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Inventor: Jeffrey B. SHEALY
  • Publication number: 20180123541
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180123540
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180123542
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Patent number: 9917568
    Abstract: A substrate structure for an acoustic resonator device. The substrate has a substrate member comprising a plurality of support members configured to form an array structure. In an example, the substrate member has an upper region, and optionally, has a plurality of recessed regions configured by the support members. The substrate has a thickness of single crystal piezo material formed overlying the upper region. In an example, the thickness of single crystal piezo material has a first surface region and a second surface region opposite of the first surface region.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 13, 2018
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9912314
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices provided on a silicon and carbide bearing material, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: March 6, 2018
    Assignee: Akoustics, Inc.
    Inventor: Jeffrey B. Shealy
  • Publication number: 20180054176
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 22, 2018
    Inventors: Dae Ho KIM, Mary WINTERS, Ramakrishna VETURY, Jeffrey B. SHEALY
  • Publication number: 20180019158
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventor: Jeffrey B. SHEALY