Patents by Inventor Jeffrey Peter Gambino

Jeffrey Peter Gambino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8232612
    Abstract: A semiconductor structure. The structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a gate dielectric region, and (iv) a gate electrode region, (v) a plurality of interconnect layers on the gate electrode region, and (vi) first and second spaces. The gate dielectric region is disposed between and in direct physical contact with the channel region and the gate electrode region. The gate electrode region is disposed between and in direct physical contact with the gate dielectric region and the interconnect layers. The first and second spaces are in direct physical contact with the gate electrode region. The first space is disposed between the first source/drain region and the gate electrode region. The second space is disposed between the second source/drain region and the gate electrode region.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Michael P. Chudzik, Jeffrey Peter Gambino, Renee T. Mo, Naim Moumen
  • Patent number: 8227874
    Abstract: A semiconductor structure. The semiconductor structure includes (i) a semiconductor substrate which includes a channel region, (ii) first and second source/drain regions on the semiconductor substrate, (iii) a final gate dielectric region, (iv) a final gate electrode region, and (v) a first gate dielectric corner region. The final gate dielectric region (i) includes a first dielectric material, and (ii) is disposed between and in direct physical contact with the channel region and the final gate electrode region. The first gate dielectric corner region (i) includes a second dielectric material that is different from the first dielectric material, (ii) is disposed between and in direct physical contact with the first source/drain region and the final gate dielectric region, (iii) is not in direct physical contact with the final gate electrode region, and (iv) overlaps the final gate electrode region in a reference direction.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Michael Patrick Chudzik, Jeffrey Peter Gambino, Hongwen Yan
  • Patent number: 8207609
    Abstract: A structure and a method. The method includes: forming a dielectric layer on a substrate; forming electrically conductive first and second wires in the dielectric layer, top surfaces of the first and second wires coplanar with a top surface of the dielectric layer; and either (i) forming an electrically conductive third wire on the top surface of the dielectric layer, and over the top surfaces of the first and second wires, the third wire electrically contacting each of the first and second wires, the third wire not detectable by optical microscopy or (ii) forming an electrically conductive third wire between the top surface of the dielectric layer and the substrate, the third wire electrically contacting each of the first and second wires, the third wire not detectable by optical microscopy.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 26, 2012
    Assignee: International Business Machines Corporation
    Inventors: Stephen Peter Ayotte, Jeffrey Peter Gambino, Timothy Dooling Sullivan, Kimball M. Watson
  • Patent number: 8193563
    Abstract: A structure and method of fabricating the structure. The structure including: a dielectric isolation in a semiconductor substrate, the dielectric isolation extending in a direction perpendicular to a top surface of the substrate into the substrate a first distance, the dielectric isolation surrounding a first region and a second region of the substrate, a top surface of the dielectric isolation coplanar with the top surface of the substrate; a dielectric region in the second region of the substrate; the dielectric region extending in the perpendicular direction into the substrate a second distance, the first distance greater than the second distance; and a first device in the first region and a second device in the second region, the first device different from the second device, the dielectric region isolating a first element of the second device from a second element of the second device.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Peter Gambino, Steven Howard Voldman, Michael Joseph Zierak
  • Patent number: 8137791
    Abstract: A structure and method of forming the structure. At least one copper wire is formed within a first dielectric layer of a substrate. The top surface of each copper wire and of the first dielectric layer are essentially coplanar. A recess is formed in the first dielectric layer from the top surface of each copper wire to a recess depth less than a thickness of each copper wire within the first dielectric layer such that the recess surrounds a perimeter surface of each copper wire. A capping layer, which is a copper diffusion barrier, is formed in the recess and on the top surface of each copper wire and on the first dielectric layer. A second dielectric layer is formed on the capping layer. The recess depth has a magnitude sufficient to prevent a lateral fail of the capping layer during packaging and/or operation of the substrate.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Felix Patrick Anderson, Jeffrey Peter Gambino, Thomas Leddy McDevitt, Anthony Kendall Stamper
  • Patent number: 8110875
    Abstract: A structure for dissipating charge during fabrication of an integrated circuit. The structure includes: a substrate contact in a semiconductor substrate; one or more wiring levels over the substrate; one or more electrically conductive charge dissipation structures extending from a top surface of an uppermost wiring level of the one or more wiring levels through each lower wiring level of the one or more wiring levels to and in electrical contact with the substrate contact; and circuit structures in the substrate and in the one or more wiring layers, the charge dissipation structures not electrically contacting any the circuit structures in any of the one or more wiring levels, the one or more charge dissipation structures dispersed between the circuit structures.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: February 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: John Joseph Ellis-Monaghan, Jeffrey Peter Gambino, Timothy Dooling Sullivan, Steven Howard Voldman
  • Publication number: 20110302542
    Abstract: A double-sided integrated circuit chips, methods of fabricating the double-sided integrated circuit chips and design structures for double-sided integrated circuit chips. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kerry Bernstein, Timothy Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Stephen Ellinwood Luce, Anthony Kendall Stamper
  • Publication number: 20110284280
    Abstract: A structure and a method. The method includes: forming a dielectric layer on a substrate; forming electrically conductive first and second wires in the dielectric layer, top surfaces of the first and second wires coplanar with a top surface of the dielectric layer; and either (i) forming an electrically conductive third wire on the top surface of the dielectric layer, and over the top surfaces of the first and second wires, the third wire electrically contacting each of the first and second wires, the third wire not detectable by optical microscopy or (ii) forming an electrically conductive third wire between the top surface of the dielectric layer and the substrate, the third wire electrically contacting each of the first and second wires, the third wire not detectable by optical microscopy.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen Peter Ayotte, Jeffrey Peter Gambino, Timothy Dooling Sullivan, Kimball M. Watson
  • Patent number: 8039888
    Abstract: A method of forming a conductive spacer on a semiconductor device. The method includes depositing a polysilicon layer on the semiconductor device, selectively implanting dopant ions in the polysilicon layer on a first side of a transistor region of the semiconductor device to define a conductive spacer area, and removing the polysilicon layer except for the conductive spacer area. Optionally, a silicidation process can be performed on the conductive spacer area so that the conductive spacer is made up of metal silicide.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gary Bela Bronner, David Michael Fried, Jeffrey Peter Gambino, Leland Chang, Ramachandra Divakaruni, Haizhou Yin, Gregory Costrini, Viraj Y. Sardesai
  • Publication number: 20110241082
    Abstract: A semiconductor structure and method of fabricating the structure. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 6, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kerry Bernstein, Timothy Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Stephen Ellinwood Luce, Anthony Kendall Stamper
  • Patent number: 8017514
    Abstract: A structure and a method. The method includes: forming a dielectric layer on a substrate; forming electrically conductive first and second wires in the dielectric layer, top surfaces of the first and second wires coplanar with a top surface of the dielectric layer; and either (i) forming an electrically conductive third wire on the top surface of the dielectric layer, and over the top surfaces of the first and second wires, the third wire electrically contacting each of the first and second wires, the third wire not detectable by optical microscopy or (ii) forming an electrically conductive third wire between the top surface of the dielectric layer and the substrate, the third wire electrically contacting each of the first and second wires, the third wire not detectable by optical microscopy.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen Peter Ayotte, Jeffrey Peter Gambino, Timothy Dooling Sullivan, Kimball M. Watson
  • Patent number: 8017995
    Abstract: An electrical structure and method of forming. The electrical structure includes a semiconductor substrate comprising a deep trench, an oxide liner layer is formed over an exterior surface of the deep trench, and a field effect transistor (FET) formed within the semiconductor substrate. The first FET includes a source structure, a drain structure, and a gate structure. The gate structure includes a gate contact connected to a polysilicon fill structure. The polysilicon fill structure is formed over the oxide liner layer and within the deep trench. The polysilicon fill structure is configured to flow current laterally across the polysilicon fill structure such that the current will flow parallel to a top surface of the semiconductor substrate.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Peter Gambino, Benjamin Thomas Voegeli, Steven Howard Voldman, Michael Joseph Zierak
  • Patent number: 8013342
    Abstract: A double-sided integrated circuit chips, methods of fabricating the double-sided integrated circuit chips and design structures for double-sided integrated circuit chips. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Stephen Ellinwood Luce, Anthony Kendall Stamper
  • Patent number: 8004289
    Abstract: Structures for aligning wafers and methods for operating the same. The structure includes (a) a first semiconductor wafer including a first capacitive coupling structure, and (b) a second semiconductor wafer including a second capacitive coupling structure. The first and second semiconductor wafers are in direct physical contact with each other via a common surface. If the first and second semiconductor wafers are moved with respect to each other by a first displacement distance of 1 nm in a first direction while the first and second semiconductor wafers are in direct physical contact with each other via the common surface, then a change of at least 10?18 F in capacitance of a first capacitor comprising the first and second capacitive coupling structures results. The first direction is essentially parallel to the common surface.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Stephen Ellinwood Luce, Edmund Juris Sprogis
  • Patent number: 7989312
    Abstract: A semiconductor structure and method of fabricating the structure. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Stephen Ellinwood Luce, Anthony Kendall Stamper
  • Patent number: 7960245
    Abstract: A semiconductor device having wiring levels on opposite sides and a method of fabricating a semiconductor structure having contacts to devices and wiring levels on opposite sides. The method including fabricating a device on a silicon-on-insulator substrate with first contacts to the devices and wiring levels on a first side to the first contacts, removing a lower silicon layer to expose the buried oxide layer, forming second contacts to the devices through the buried oxide layer and forming wiring levels over the buried oxide layer to the second contacts.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Anthony Kendall Stamper
  • Publication number: 20110136339
    Abstract: A microelectronic structure includes a dielectric layer located over a substrate. The dielectric layer is separated from a copper containing conductor layer by an oxidation barrier layer. The microelectronic structure also includes a manganese oxide layer located aligned upon a portion of the copper containing conductor layer not adjoining the oxidation barrier layer. A method for fabricating the microelectronic structure includes sequentially forming and sequentially planarizing within an aperture within a dielectric layer an oxidation barrier layer, a manganese containing layer (or alternatively a mobile and oxidizable material layer) and finally, a planarized copper containing conductor layer (or alternatively a base material layer comprising a material less mobile and oxidizable than the mobile and oxidizable material layer) to completely fill the aperture.
    Type: Application
    Filed: January 28, 2011
    Publication date: June 9, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey Peter Gambino, Stephen Ellinwood Luce
  • Patent number: 7939914
    Abstract: A semiconductor device having wiring levels on opposite sides and a method of fabricating a semiconductor structure having contacts to devices and wiring levels on opposite sides. The method including fabricating a device on a silicon-on-insulator substrate with first contacts to the devices and wiring levels on a first side to the first contacts, removing a lower silicon layer to expose the buried oxide layer, forming second contacts to the devices through the buried oxide layer and forming wiring levels over the buried oxide layer to the second contacts.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Anthony Kendall Stamper
  • Patent number: 7939390
    Abstract: A semiconductor structure formation method and operation method. The structure includes (i) a dielectric layer, (ii) a bottom capacitor plate and an electrically conductive line on the dielectric layer, (iii) a top capacitor plate on top of the bottom capacitor plate, (iv) a gap region, and (v) a solder ball on the dielectric layer. The dielectric layer includes a top surface that defines a reference direction perpendicular to the top surface. The top capacitor plate overlaps the bottom capacitor plate in the reference direction. The gap region is sandwiched between the bottom capacitor plate and the top capacitor plate. The gap region does not include any liquid or solid material. The solder ball is electrically connected to the electrically conductive line. The top capacitor plate is disposed between the dielectric layer and the solder ball.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen P. Ayotte, Timothy Harrison Daubenspeck, Jeffrey Peter Gambino, Christopher David Muzzy, Wolfgang Sauter
  • Publication number: 20110100685
    Abstract: An electrical structure and method of forming. The electrical structure includes a first substrate, a first dielectric layer, an underfill layer, a first solder structure, and a second substrate. The first dielectric layer is formed over a top surface of the first substrate. The first dielectric layer includes a first opening extending through a top surface and a bottom surface of said first dielectric layer. The first solder structure is formed within the first opening and over a portion of the top surface of said first dielectric layer. The second substrate is formed over and in contact with the underfill layer.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy Harrison Daubenspeck, Jeffrey Peter Gambino, Christopher David Muzzy, Wolfgang Sauter