Patents by Inventor Jeffrey S. Brown

Jeffrey S. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090134463
    Abstract: A semiconductor structure and a system for fabricating an integrated circuit chip. The semiconductor structure includes: a buried oxide layer on a semiconductor wafer; a thin fin structure on the buried oxide layer, wherein the thin fin structure includes a first hard mask on a semiconductor fin, wherein the semiconductor fin is disposed between the first hard mask and a surface of the buried oxide layer; and a thick mesa structure on the buried oxide layer, and wherein the thick mesa structure includes a semiconductor mesa. The system for fabricating an integrated circuit chip enables: providing a buried oxide layer on and in direct mechanical contact with a semiconductor wafer; and concurrently forming at least one fin-type field effect transistor and at least one thick-body device on the buried oxide layer.
    Type: Application
    Filed: January 5, 2009
    Publication date: May 28, 2009
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthier, JR., Edward J. Nowak, Jed H. Rankin, William R. Tonti
  • Patent number: 7525864
    Abstract: A method for conserving power in a device is disclosed. The method generally includes the steps of (A) storing a plurality of data items in a plurality of bit cells in the device such that a majority of the bit cells holding the data items have a first logic state, wherein reading one of the bit cells having the first logic state consumes less power than reading one of the bit cells having a second logic state; (B) generating a polarity signal by analyzing the data items, the polarity signal indicating that the data items are stored in one of (i) an inverted condition and (ii) a non-inverted condition relative to a normal condition; and (C) driving at least one of the data items onto an external interface of the device in the normal condition during a read operation based on the polarity signal.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: April 28, 2009
    Assignee: LSI Corporation
    Inventor: Jeffrey S. Brown
  • Publication number: 20090091999
    Abstract: A method of power optimization in a memory is disclosed. The method generally includes the steps of (A) dividing a plurality of bit cells in a design of the memory into (i) a plurality of first rows storing programmed data and (ii) at least one second row storing only padding data, (B) adjusting the design such that a second power consumption in each of the second rows is lower than a first power consumption in each of the first rows and (C) generating a file defining the design as adjusted.
    Type: Application
    Filed: October 8, 2007
    Publication date: April 9, 2009
    Inventor: Jeffrey S. Brown
  • Patent number: 7496867
    Abstract: A method of managing a cell library regarding power optimization is disclosed. The method generally includes the steps of (A) reading a plurality of first modules within a first region of a circuit design stored in a design file, (B) calculating a first merit value indicating a relative sensitivity of the first region to a power consumption, the first merit value having a range from a static power dominated value to a dynamic power dominated value and (C) creating a constraint file configured to limit a design tool to a first subset of a plurality of replacement modules based on the first merit value such that the design tool automatically optimizes the power consumption of the first region by replacing at least one of the first modules with at least one of the replacement modules within the first subset, the replacement modules residing in a library file.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: February 24, 2009
    Assignee: LSI Corporation
    Inventors: Mark F. Turner, Jonathan W. Byrn, Jeffrey S. Brown
  • Publication number: 20090021289
    Abstract: An integrated circuit that includes at least one tunneling device voltage detection circuit for generating a trigger flag signal. The tunneling device voltage detection circuit includes first and second voltage dividers receiving a supply voltage and having corresponding respective first and second internal node output voltages. The first and second voltage dividers are configured so the first output voltage is linear relative to the supply voltage and so that the second output voltage is nonlinear relative to the supply voltage. As the supply voltage ramps up, the profiles of the first and second output voltage cross at a particular voltage. An operational amplifier circuit senses when the first and second output voltages become equal and, in response thereto, outputs a trigger signal that indicates that the supply voltage has reached a certain level.
    Type: Application
    Filed: September 30, 2008
    Publication date: January 22, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Albert M. Chu, John A. Fifield
  • Patent number: 7473970
    Abstract: An integrated circuit chip and a semiconductor structure. The integrated circuit chip includes: a thick-body device containing a semiconductor mesa and a doped body contact; and a field effect transistor on a first sidewall of a semiconductor mesa, wherein the doped body contact is on a second sidewall of the semiconductor mesa, and wherein the semiconductor mesa is disposed between the field effect transistor and the doped body contact. The semiconductor structure includes: a buried oxide layer on a semiconductor wafer; a thin fin structure on the buried oxide layer, wherein the thin fin structure includes a first hard mask on a semiconductor fin, wherein the semiconductor fin is disposed between the first hard mask and a surface of the buried oxide layer; and a thick mesa structure on the buried oxide layer, and wherein the thick mesa structure includes a semiconductor mesa.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthier, Jr., Edward J. Nowak, Jed H. Rankin, William R. Tonti
  • Patent number: 7466171
    Abstract: An integrated circuit that includes at least one tunneling device voltage detection circuit for generating a trigger flag signal. The tunneling device voltage detection circuit includes first and second voltage dividers receiving a supply voltage and having corresponding respective first and second internal node output voltages. The first and second voltage dividers are configured so the first output voltage is linear relative to the supply voltage and so that the second output voltage is nonlinear relative to the supply voltage. As the supply voltage ramps up, the profiles of the first and second output voltage cross at a particular voltage. An operational amplifier circuit senses when the first and second output voltages become equal and, in response thereto, outputs a trigger signal that indicates that the supply voltage has reached a certain level.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: December 16, 2008
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Albert M. Chu, John A. Fifield
  • Publication number: 20080247257
    Abstract: A method for conserving power in a device is disclosed. The method generally includes the steps of (A) storing a plurality of data items in a plurality of bit cells in the device such that a majority of the bit cells holding the data items have a first logic state, wherein reading one of the bit cells having the first logic state consumes less power than reading one of the bit cells having a second logic state; (B) generating a polarity signal by analyzing the data items, the polarity signal indicating that the data items are stored in one of (i) an inverted condition and (ii) a non-inverted condition relative to a normal condition; and (C) driving at least one of the data items onto an external interface of the device in the normal condition during a read operation based on the polarity signal.
    Type: Application
    Filed: April 5, 2007
    Publication date: October 9, 2008
    Inventor: Jeffrey S. Brown
  • Publication number: 20080250257
    Abstract: A method for conserving power in a device. The method generally includes the steps of (A) generating a polarity signal by analyzing a current one of a plurality of data items having a plurality of data bits, the polarity signal having an inversion bit indicating that the current data item is to be stored in one of (i) an inverted condition and (ii) a non-inverted condition relative to a normal condition such that a majority of the data bits have a first logic state, wherein reading one of the data bits having the first logic state consumes less power than reading one of the data bits having a second logic state, (B) selectively either (i) inverting the current data item or (ii) not inverting current the data item based on the inversion bit and (C) storing the current data item in a plurality of single-ended bit cells in the device.
    Type: Application
    Filed: February 28, 2008
    Publication date: October 9, 2008
    Inventor: Jeffrey S. Brown
  • Publication number: 20080244474
    Abstract: A method of managing a cell library regarding power optimization is disclosed. The method generally includes the steps of (A) reading a plurality of first modules within a first region of a circuit design stored in a design file, (B) calculating a first merit value indicating a relative sensitivity of the first region to a power consumption, the first merit value having a range from a static power dominated value to a dynamic power dominated value and (C) creating a constraint file configured to limit a design tool to a first subset of a plurality of replacement modules based on the first merit value such that the design tool automatically optimizes the power consumption of the first region by replacing at least one of the first modules with at least one of the replacement modules within the first subset, the replacement modules residing in a library file.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Inventors: Mark F. Turner, Jonathan W. Byrn, Jeffrey S. Brown
  • Publication number: 20080169844
    Abstract: An integrated circuit that includes at least one tunneling device voltage detection circuit for generating a trigger flag signal. The tunneling device voltage detection circuit includes first and second voltage dividers receiving a supply voltage and having corresponding respective first and second internal node output voltages. The first and second voltage dividers are configured so the first output voltage is linear relative to the supply voltage and so that the second output voltage is nonlinear relative to the supply voltage. As the supply voltage ramps up, the profiles of the first and second output voltage cross at a particular voltage. An operational amplifier circuit senses when the first and second output voltages become equal and, in response thereto, outputs a trigger signal that indicates that the supply voltage has reached a certain level.
    Type: Application
    Filed: January 15, 2007
    Publication date: July 17, 2008
    Applicant: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Albert M. Chu, John A. Fifield
  • Patent number: 7301210
    Abstract: Disclosed is an integrated circuit with multiple semiconductor fins having different widths and variable spacing on the same substrate. The method of forming the circuit incorporates a sidewall image transfer process using different types of mandrels. Fin thickness and fin-to-fin spacing are controlled by an oxidation process used to form oxide sidewalls on the mandrels, and more particularly, by the processing time and the use of intrinsic, oxidation-enhancing and/or oxidation-inhibiting mandrels. Fin thickness is also controlled by using sidewalls spacers combined with or instead of the oxide sidewalls. Specifically, images of the oxide sidewalls alone, images of sidewall spacers alone, and/or combined images of sidewall spacers and oxide sidewalls are transferred into a semiconductor layer to form the fins. The fins with different thicknesses and variable spacing can be used to form a single multiple-fin FET or, alternatively, various single-fin and/or multiple-fin FETs.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: November 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, William R. Tonti
  • Patent number: 7297582
    Abstract: A method and structure is disclosed for a transistor having a gate, a channel region below the gate, a source region on one side of the channel region, a drain region on an opposite side of the channel region from the source region, a shallow trench isolation (STI) region in the substrate between the drain region and the channel region, and a drain extension below the STI region. The drain extension is positioned along a bottom of the STI region and along a portion of sides of the STI. Portions of the drain extension along the bottom of the STI may comprise different dopant implants than the portions of the drain extensions along the sides of the STI. Portions of the drain extensions along sides of the STI extend from the bottom of the STI to a position partially up the sides of the STI. The STI region is below a portion of the gate. The drain extension provides a conductive path between the drain region and the channel region around a lower perimeter of the STI.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: November 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Robert J. Gauthier, Jr., Jed H. Rankin, William R. Tonti
  • Patent number: 7253066
    Abstract: An inverse-T transistor is formed by a method that decouples the halo implant, the deep S/D implant and the extension implant, so that the threshold voltage can be set by adjusting the halo implant without being affected by changes to the extension implant that are intended to alter the series resistance of the device. Formation of the inverse-T structure can be made by a damascene method in which a temporary layer deposited over the layer that will form the cross bar of the T has an aperture formed in it to hold the gate electrode, the aperture being lined with vertical sidewalls that provide space for the ledges that form the T. Another method of gate electrode formation starts with a layer of poly, forms a block for the gate electrode, covers the horizontal surfaces outside the gate with an etch-resistant material and etches horizontally to remove material above the cross bars on the T, the cross bars being protected by the etch resistant material.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Kiran V. Chatty, Robert J. Gauthier, Jr., Carl J. Radens, William R. Tonti
  • Patent number: 7219270
    Abstract: A device and method are provided for testing the timing of an output signal from a circuit. The output signal can be sent from a circuit contained within a portion of an integrated circuit, and represents a response to a test pattern or stimuli applied to that circuit. The output signal is compared to an expected output signal to determine skew of that signal relative to the clocking of the circuit. Testing the output signal involves placing a characterization path within the functional path of the output signal, between the circuits being tested and an output terminal that can receive a measurement device. By placing the characterization path into the functional path, the output signal sees only a single load gate terminal of, for example, a logic gate. The reduced loading not only positively impacts the normal operation of the output signal, but also beneficially minimizes the possibility of any inaccuracies in the characterization testing.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: May 15, 2007
    Assignee: LSI Logic Corporation
    Inventors: Jeffrey S. Brown, Craig R. Chafin
  • Patent number: 7163851
    Abstract: The present invention provides methods for fabrication of fin-type field effect transistors (FinFETs) and thick-body devices on the same chip using common masks and steps to achieve greater efficiency than prior methods. The reduction in the number of masks and steps is achieved by using common masks and steps with several scaling strategies. In one embodiment, the structure normally associated with a FinFET is created on the side of a thick silicon mesa, the bulk of which is doped to connect with a body contact on the opposite side of the mesa. The invention also includes FinFETs, thick-body devices, and chips fabricated by the methods.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: January 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthier, Jr., Edward J. Nowak, Jed H. Rankin, William R. Tonti
  • Patent number: 7132325
    Abstract: A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: November 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Eric Adler, Jeffrey S. Brown, Robert J. Gauthier, Jr., Jonathan M. McKenna, Jed H. Rankin, Edward W. Sengle, William R. Tonti
  • Patent number: 7131103
    Abstract: A method for integrating a first integrated circuit design having first layers and a second integrated circuit design having second layers into a common reticle set. The second integrated circuit design has a given number of second layers and the first integrated circuit design has less than the given number of layers. At least one of the first layers is duplicated to produce at least one duplicated first layer until the first integrated circuit design has the given number of layers. The first layers and the at least one duplicated first layer are mapped to a modified first integrated circuit design having the given number of first layers. A reticle set is fabricated to include the given number of first layers and second layers, using the modified first integrated circuit design and the second integrated circuit design.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: October 31, 2006
    Assignee: LSI Logic Corporation
    Inventor: Jeffrey S. Brown
  • Patent number: 7087486
    Abstract: Capacitor structures that have increased capacitance without compromising cell area are provided as well as methods for fabricating the same. A first capacitor structure includes insulating material present in holes that are formed in a semiconductor substrate, where the insulating material is thicker on the bottom wall of each capacitor hole as compared to the sidewalls of each hole. In another capacitor structure, deep capacitor holes are provided that have an isolation implant region present beneath each hole.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey S. Brown, Randy W. Mann
  • Patent number: 7087499
    Abstract: A method is described for fabricating and antifuse structure (100) integrated with a semiconductor device such as a FINFET or planar CMOS devise. A region of semiconducting material (11) is provided overlying an insulator (3) disposed on a substrate (10); an etching process exposes a plurality of corners (111–114) in the semiconducting material. The exposed corners are oxidized to form elongated tips (111t–114t) at the corners; the oxide (31) overlying the tips is removed. An oxide layer (51), such as a gate oxide, is then formed on the semiconducting material and overlying the corners; this layer has a reduced thickness at the corners. A layer of conducting material (60) is formed in contact with the oxide layer (51) at the corners, thereby forming a plurality of possible breakdown paths between the semiconducting material and the layer of conducting material through the oxide layer.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jed H. Rankin, Wagdi W. Abadeer, Jeffrey S. Brown, William R. Tonti