Patents by Inventor Jeffrey W. Anthis

Jeffrey W. Anthis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10410865
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan, Yihong Chen, Kelvin Chan, Srinivas Gandikota
  • Publication number: 20190256467
    Abstract: Methods for deposition of elemental metal films on surfaces using metal coordination complexes comprising nitrogen-containing ligands are provided. Also provided are nitrogen-containing ligands useful in the methods of the invention and metal coordination complexes comprising these ligands.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Inventors: Jeffrey W. Anthis, David Thompson
  • Patent number: 10364492
    Abstract: Methods are provided for deposition of films comprising manganese on surfaces using metal coordination complexes comprising an amidoimino-based ligand. Certain methods comprise exposing a substrate surface to a manganese precursor, and exposing the substrate surface to a co-reagent.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: July 30, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jeffrey W. Anthis, David Thompson, Ravi Kanjolia, Shaun Garrett
  • Patent number: 10323054
    Abstract: Metal coordination complexes comprising a metal atom coordinated to at least one aza-allyl ligand having the structure represented by: where each R1-R4 are independently selected from the group consisting of H, branched or unbranched C1-C6 alkyl, branched or unbranched C1-C6 alkenyl, branched or unbranched C1-C6 alkynyl, cycloalkyl groups having in the range of 1 to 6 carbon atoms, silyl groups and halogens. Methods of depositing a film using the metal coordination complex and a suitable reactant are also described.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: June 18, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Schmiege, Jeffrey W. Anthis, David Thompson
  • Patent number: 10315995
    Abstract: Methods for deposition of elemental metal films on surfaces using metal coordination complexes comprising nitrogen-containing ligands are provided. Also provided are nitrogen-containing ligands useful in the methods of the invention and metal coordination complexes comprising these ligands.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, David Thompson
  • Patent number: 10297462
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Materials Inc.
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson
  • Publication number: 20190115255
    Abstract: Methods for filling a substrate feature with a seamless ruthenium gap fill are described. The methods include depositing a ruthenium film, oxidizing the ruthenium film to form an oxidized ruthenium film, reducing the oxidized ruthenium film to a reduced ruthenium film and repeating the oxidation and reduction processes to form a seamless ruthenium gap fill.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Inventors: Nasrin Kazem, Jeffrey W. Anthis, David Thompson
  • Patent number: 10242885
    Abstract: A process to selectively etch a substrate surface comprising multiple metal oxides comprising exposing the substrate surface to a halogenation agent, and then exposing the substrate surface to a ligand transfer agent. The etch rate of the metals in the multiple metal oxides is substantially uniform.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 26, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, David Thompson, Benjamin Schmiege
  • Publication number: 20190088489
    Abstract: Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 21, 2019
    Inventors: Xinyu Fu, David Knapp, David Thompson, Jeffrey W. Anthis, Mei Chang
  • Patent number: 10233547
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: March 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Publication number: 20190078203
    Abstract: Processing methods for forming iridium-containing films at low temperatures are described. The methods comprise exposing a substrate to iridium hexafluoride and a reactant to form iridium metal or iridium silicide films. Methods for enhancing selectivity and tuning the silicon content of some films are also described.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 14, 2019
    Inventors: Feng Q. Liu, Hua Chung, Schubert Chu, Mei Chang, Jeffrey W. Anthis, David Thompson
  • Publication number: 20190080904
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing a substrate to a blocking molecule to selectively deposit a blocking layer on the first surface. A layer is selectively formed on the second surface and defects of the layer are formed on the blocking layer. The defects are removed from the blocking layer on the first surface.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 14, 2019
    Inventors: Jeffrey W. Anthis, Chang Ke, Pratham Jain, Benjamin Schmiege, Guoqiang Jian, Michael S. Jackson, Lei Zhou, Paul F. Ma, Liqi Wu
  • Publication number: 20190062916
    Abstract: Methods for depositing a film comprising exposing a substrate surface to a bis-amidinate metal precursor and a co-reactant to form a metal containing film are described. The bis-amidinate metal precursor comprises a metal atom comprising one or more lanthanide.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Inventors: Benjamin Schmiege, Jeffrey W. Anthis
  • Publication number: 20190013202
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 10, 2019
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan
  • Publication number: 20180366322
    Abstract: Methods of forming a lanthanide-containing film comprising exposing a substrate surface to a lanthanide-containing precursor, a metal halide and a nitrogen precursor are described. The lanthanide-containing precursor has the general formula (CpRx)2Ln(N,N-dialkylamidinate) where Cp is a cyclopentadienyl or 6, 7 or 8 membered ring, R is H, C1-C4 alkyl, x=1 to number of C in Cp, alkyl is C1 to C4 alkyl. The metal halide deposits metal halide on the substrate surface and reacts with lanthanide-containing species to convert the lanthanide-containing species to a lanthanide halide. The nitrogen-containing precursor forms a lanthanide-metal-nitride film on the substrate surface.
    Type: Application
    Filed: June 20, 2018
    Publication date: December 20, 2018
    Inventors: Benjamin Schmiege, Jeffrey W. Anthis, David Thompson
  • Publication number: 20180342403
    Abstract: A process to selectively etch a substrate surface comprising multiple metal oxides comprising exposing the substrate surface to a halogenation agent, and then exposing the substrate surface to a ligand transfer agent. The etch rate of the metals in the multiple metal oxides is substantially uniform.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Inventors: Jeffrey W. Anthis, David Thompson, Benjamin Schmiege
  • Patent number: 10121671
    Abstract: Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: November 6, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, David Knapp, David Thompson, Jeffrey W. Anthis, Mei Chang
  • Patent number: 10115593
    Abstract: Embodiments include a method of processing a hardmask that includes forming an alloyed carbon hardmask over an underlying layer. In an embodiment, the alloyed carbon hardmask is alloyed with metallic-carbon fillers. The embodiment further includes patterning the alloyed carbon hardmask and transferring the pattern of the alloyed carbon hardmask into the underlying layer. According to an embodiment, the method may further include removing the metallic component of the metallic-carbon fillers from the alloyed carbon hardmask to form a porous carbon hardmask. Thereafter, the porous hardmask may be removed. In an embodiment, the metallic component of the metallic-carbon fillers may include flowing a processing gas into a chamber that volatizes the metallic component of the metallic-carbon fillers.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: October 30, 2018
    Assignee: Applied Materials, Inc.
    Inventors: David Knapp, Simon Huang, Jeffrey W. Anthis, Philip Alan Kraus, David Thompson
  • Publication number: 20180291052
    Abstract: Metal coordination complexes comprising at least one diazabutadiene based ligand having a structure represented by: where R1 and R4 are selected from the group consisting of C4-C10 alkyl groups; and R2 and R3 are each independently selected from the group consisting of H, C1-C6 alkyl, cycloalkyl, or aryl groups and the difference in the number of carbons in R2 and R3 is greater than or equal to 2. Processing methods using the metal coordination complexes are also described.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 11, 2018
    Inventors: Jeffrey W. Anthis, Atashi Basu, David Thompson, Nasrin Kazem
  • Publication number: 20180291051
    Abstract: Metal coordination complexes comprising at least one diazabutadiene based ligand having a structure represented by: where A1, A2, A3, and A4 are atoms in a 6-membered ring and are independently selected from C, N, O, S, and P; and where R1, R2, R3, R4, R5, and R6 are independently selected from the group consisting of H, amino groups, C1-C6 alkyl groups, or C4-10 cycloalkyl groups; and further provided that alkyl groups may optionally contain silicon; and where the metal coordination complex is capable of participating in a Diels-Alder type reaction with a dienophile. Processing methods using the metal coordination complexes are also described.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 11, 2018
    Inventors: Jeffrey W. Anthis, Atashi Basu