Patents by Inventor Jeffrey W. Anthis

Jeffrey W. Anthis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9799533
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: October 24, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson
  • Patent number: 9721787
    Abstract: Provided are methods of depositing tantalum-containing films via atomic layer deposition and/or chemical vapor deposition. The method comprises exposing a substrate surface to flows of a first precursor comprising TaClxR5-x, TaBrxR5-x or TaIxR5-x, wherein R is a non-halide ligand, and a second precursor comprising an aluminum-containing compound, wherein x has a value in the range of 1 to 4. The R group may be C1-C5 alkyl, and specifically methyl. The resulting films comprise tantalum, aluminum and/or carbon. Certain other methods relate to reacting Ta2Cl10 with a coordinating ligand to provide TaCl5 coordinated to the ligand. A substrate surface may be exposed to flows of a first precursor and second precursor, the first precursor comprising the TaCl5 coordinated to a ligand, the second precursor comprising an aluminum-containing compound.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 1, 2017
    Assignee: Applied Materials, Inc.
    Inventors: David Thompson, Jeffrey W. Anthis
  • Publication number: 20170213726
    Abstract: Provided are acetylide-based compounds and methods of making the same. Also provided are methods of using said compounds in film deposition processes to deposit films comprising silicon. Certain methods comprise exposing a substrate surface to a acetylide-based precursor and a reactant in various combinations.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: Mark Saly, Bhaskar Jyoti Bhuyan, Jeffrey W. Anthis, Feng Q. Liu, David Thompson
  • Patent number: 9711366
    Abstract: Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. A remote plasma is used to excite the halogen-containing precursor and a local plasma may be used in embodiments. Metal-containing materials on the substrate may be pretreated using moisture or another OH-containing precursor before exposing the resulting surface to remote plasma excited halogen effluents in embodiments.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 18, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jessica Sevanne Kachian, Lin Xu, Soonam Park, Xikun Wang, Jeffrey W. Anthis
  • Patent number: 9683287
    Abstract: Films comprising Aluminum, carbon and a metal, wherein the aluminum is present in an amount greater than about 16% by elemental content and the film has less than about 50% carbon. Methods of forming the films comprise exposing a substrate to a metal halide precursor, purging the metal halide precursor from the processing chamber and then exposing the substrate to an alkyl aluminum precursor and an alane precursor, either sequentially or simultaneously. The alane precrursor comprises an amine-alane and a stabilizing amine selected from one or more of diemthylcyclohexylamine or dicyclomethylhexylamine.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: June 20, 2017
    Assignee: Applied Materials, Inc.
    Inventors: David Thompson, Srinivas Gandikota, Xinliang Lu, Wei Tang, Jing Zhou, Seshadri Ganguli, Jeffrey W. Anthis, Atif Noori, Faruk Gungor, Dien-Yeh Wu, Mei Chang, Shih Chung Chen
  • Publication number: 20170159188
    Abstract: A system and method for removing metal from a substrate in a controlled manner is disclosed. The system includes a chamber, with one or more gas inlets to allow the flow of gasses into the chamber, at least one exhaust pump, to exhaust gasses from the chamber, and a heater, capable of modifying the temperature of the chamber. In some embodiments, one or more gasses are introduced into the chamber at a first temperature. The atoms in these gasses chemically react with the metal on the surface of the substrate to form a removable compound. The gasses are then exhausted from the chamber, leaving the removable compound on the surface of the substrate. The temperature of the chamber is then elevated to a second temperature, greater than the sublimation temperature of the removable compound. This increased temperature allows the removable compound to become gaseous and be exhausted from the chamber.
    Type: Application
    Filed: February 22, 2017
    Publication date: June 8, 2017
    Inventors: Tsung-Liang Chen, Benjamin Schmiege, Jeffrey W. Anthis, Glen Gilchrist
  • Publication number: 20170121287
    Abstract: Methods for deposition of elemental metal films on surfaces using metal coordination complexes comprising nitrogen-containing ligands are provided. Also provided are nitrogen-containing ligands useful in the methods of the invention and metal coordination complexes comprising these ligands.
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Jeffrey W. Anthis, David Thompson
  • Publication number: 20170096740
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Patent number: 9611552
    Abstract: A system and method for removing metal from a substrate in a controlled manner is disclosed. The system includes a chamber, with one or more gas inlets to allow the flow of gasses into the chamber, at least one exhaust pump, to exhaust gasses from the chamber, and a heater, capable of modifying the temperature of the chamber. In some embodiments, one or more gasses are introduced into the chamber at a first temperature. The atoms in these gasses chemically react with the metal on the surface of the substrate to form a removable compound. The gasses are then exhausted from the chamber, leaving the removable compound on the surface of the substrate. The temperature of the chamber is then elevated to a second temperature, greater than the sublimation temperature of the removable compound. This increased temperature allows the removable compound to become gaseous and be exhausted from the chamber.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 4, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Tsung-Liang Chen, Benjamin Schmiege, Jeffrey W. Anthis, Glen Gilchrist
  • Publication number: 20170062224
    Abstract: Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
    Type: Application
    Filed: August 11, 2016
    Publication date: March 2, 2017
    Inventors: Xinyu Fu, David Knapp, David Thompson, Jeffrey W. Anthis, Mei Chang
  • Patent number: 9580799
    Abstract: Methods for deposition of elemental metal films on surfaces using metal coordination complexes comprising nitrogen-containing ligands are provided. Also provided are nitrogen-containing ligands useful in the methods of the invention and metal coordination complexes comprising these ligands.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 28, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, David Thompson
  • Publication number: 20170016113
    Abstract: Methods of depositing a metal-containing film by exposing a substrate surface to a first precursor and a reactant, where one or more of the first precursor and the react comprises a compound having the general formula of one or more of M(XR3)2, M(XR3)3, M(XR3)4, M(XR3)5 and M(XR3)6, where M is selected from the group consisting of Al, Ti, Ta, Zr, La, Hf, Ce, Zn, Cr, Sn, V and combinations thereof, each X is one or more of C, Si and Ge and each R is independently a methyl or ethyl group and comprises substantially no ?-H.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 19, 2017
    Inventors: David Thompson, David Knapp, Jeffrey W. Anthis
  • Patent number: 9540736
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: January 10, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Publication number: 20160336222
    Abstract: Processing methods comprising exposing a substrate to a nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal-containing compound and a second reactive gas to form a metal-containing film on the substrate.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 17, 2016
    Inventors: David Knapp, Jeffrey W. Anthis, Xinyu Fu, Srinivas Gandikota
  • Patent number: 9472417
    Abstract: Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. No plasma excites the halogen-containing precursor either remotely or locally in embodiments.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: October 18, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jessica Sevanne Kachian, Lin Xu, Soonam Park, Xikun Wang, Jeffrey W. Anthis
  • Publication number: 20160293449
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Application
    Filed: June 9, 2016
    Publication date: October 6, 2016
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson
  • Patent number: 9449843
    Abstract: Methods of selectively etching metals and metal nitrides from the surface of a substrate are described. The etch selectively removes metals and metal nitrides relative to silicon-containing layers such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The etch removes material in a conformal manner by including an oxidation operation which creates a thin uniform metal oxide. The thin uniform metal oxide is then removed by exposing the metal oxide to a metal-halogen precursor in a substrate processing region. The metal oxide may be removed to completion and the etch may stop once the uniform metal oxide layer is removed. Etches described herein may be used to uniformly trim back material on high aspect ratio features which ordinarily show higher etch rates near the opening of a gap compared to deep within the gap.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: September 20, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Mikhail Korolik, Nitin K. Ingle, David Thompson, Jeffrey W. Anthis, David Knapp, Benjamin Schmiege
  • Publication number: 20160265121
    Abstract: A system and method for removing metal from a substrate in a controlled manner is disclosed. The system includes a chamber, with one or more gas inlets to allow the flow of gasses into the chamber, at least one exhaust pump, to exhaust gasses from the chamber, and a heater, capable of modifying the temperature of the chamber. In some embodiments, one or more gasses are introduced into the chamber at a first temperature. The atoms in these gasses chemically react with the metal on the surface of the substrate to form a removable compound. The gasses are then exhausted from the chamber, leaving the removable compound on the surface of the substrate. The temperature of the chamber is then elevated to a second temperature, greater than the sublimation temperature of the removable compound. This increased temperature allows the removable compound to become gaseous and be exhausted from the chamber.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventors: Tsung-Liang Chen, Benjamin Schmiege, Jeffrey W. Anthis, Glen Gilchrist
  • Publication number: 20160222522
    Abstract: Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Xikun Wang, Jie Liu, Anchuan Wang, Nitin K. Ingle, Jeffrey W. Anthis, Benjamin Schmiege
  • Patent number: 9390940
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 12, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson