Patents by Inventor Jeffrey W. Anthis

Jeffrey W. Anthis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10096514
    Abstract: Methods for filing a feature on a substrate surface comprising depositing a conformal nitride film on the substrate surface and at least one feature on the surface, oxidizing a portion of the nitride film to form an asymmetric oxide film on top of the nitride film and etching the oxide film from the nitride film to leave a v-shaped nitride film in the at least one feature.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 9, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jeffrey W. Anthis, David Thompson
  • Patent number: 10083834
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: September 25, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan
  • Publication number: 20180265988
    Abstract: A system and method for removing metal from a substrate in a controlled manner is disclosed. The system includes a chamber, with one or more gas inlets to allow the flow of gasses into the chamber, at least one exhaust pump, to exhaust gasses from the chamber, and a heater, capable of modifying the temperature of the chamber. In some embodiments, one or more gasses are introduced into the chamber at a first temperature. The atoms in these gasses chemically react with the metal on the surface of the substrate to form a removable compound. The gasses are then exhausted from the chamber, leaving the removable compound on the surface of the substrate. The temperature of the chamber is then elevated to a second temperature, greater than the sublimation temperature of the removable compound. This increased temperature allows the removable compound to become gaseous and be exhausted from the chamber.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 20, 2018
    Inventors: Tsung-Liang Chen, Benjamin Schmiege, Jeffrey W. Anthis, Glen Gilchrist
  • Patent number: 10036089
    Abstract: Provided are methods of depositing films comprising exposing at least a portion of a substrate to a metal precursor to provide a first metal on the substrate and an organometallic reducing agent to deposit a second metal on the substrate to form a mixture or alloy of the first metal and the second metal. Exposure to the metal precursor and organometallic reducing agent can be in either order or simultaneously.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 31, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Thompson, Jeffrey W. Anthis
  • Publication number: 20180195179
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Application
    Filed: February 19, 2018
    Publication date: July 12, 2018
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Publication number: 20180195170
    Abstract: Processing methods comprising exposing a substrate to a first reactive gas comprising a cyclopentadienyl nickel complex and a second reactive gas comprising a sub-saturative amount of oxygen to form a nickel oxide film with a carbon content in the range of about 2 to about 10 atomic percent are described.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Jeffrey W. Anthis, Ghazal Saheli, Feng Q. Liu, David Thompson
  • Publication number: 20180195167
    Abstract: Processing methods comprising exposing a substrate to a first reactive gas comprising an ethylcyclopentadienyl ruthenium complex or a cyclohexadienyl ruthenium complex and a second reactive gas comprising water to form a ruthenium film are described.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Feng Q. Liu, Feng F. Chen, Jeffrey W. Anthis, David Thompson, Mei Chang
  • Patent number: 10000853
    Abstract: A system and method for removing metal from a substrate in a controlled manner is disclosed. The system includes a chamber, with one or more gas inlets to allow the flow of gasses into the chamber, at least one exhaust pump, to exhaust gasses from the chamber, and a heater, capable of modifying the temperature of the chamber. In some embodiments, one or more gasses are introduced into the chamber at a first temperature. The atoms in these gasses chemically react with the metal on the surface of the substrate to form a removable compound. The gasses are then exhausted from the chamber, leaving the removable compound on the surface of the substrate. The temperature of the chamber is then elevated to a second temperature, greater than the sublimation temperature of the removable compound. This increased temperature allows the removable compound to become gaseous and be exhausted from the chamber.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: June 19, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Tsung-Liang Chen, Benjamin Schmiege, Jeffrey W. Anthis, Glen Gilchrist
  • Publication number: 20180155379
    Abstract: Metal coordination complexes comprising a metal atom coordinated to at least one diazabutadiene ligand having a structure represented by: where each R is independently a C1-C13 alkyl or aryl group and each R? is independently H, C1-C10 alkyl or aryl group are described. Processing methods using the metal coordination complexes are also described.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Benjamin Schmiege, Jeffrey W. Anthis, David Thompson
  • Publication number: 20180148466
    Abstract: Metal coordination complexes comprising a metal atom coordinated to at least one aza-allyl ligand having the structure represented by: where each R1-R4 are independently selected from the group consisting of H, branched or unbranched C1-C6 alkyl, branched or unbranched C1-C6 alkenyl, branched or unbranched C1-C6 alkynyl, cycloalkyl groups having in the range of 1 to 6 carbon atoms, silyl groups and halogens. Methods of depositing a film using the metal coordination complex and a suitable reactant are also described.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 31, 2018
    Inventors: Benjamin Schmiege, Jeffrey W. Anthis, David Thompson
  • Patent number: 9982345
    Abstract: Methods of depositing a metal-containing film by exposing a substrate surface to a first precursor and a reactant, where one or more of the first precursor and the react comprises a compound having the general formula of one or more of M(XR3)2, M(XR3)3, M(XR3)4, M(XR3)5 and M(XR3)6, where M is selected from the group consisting of Al, Ti, Ta, Zr, La, Hf, Ce, Zn, Cr, Sn, V and combinations thereof, each X is one or more of C, Si and Ge and each R is independently a methyl or ethyl group and comprises substantially no ?-H.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: May 29, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Thompson, David Knapp, Jeffrey W. Anthis
  • Publication number: 20180096834
    Abstract: Embodiments include a method of processing a hardmask that includes forming an alloyed carbon hardmask over an underlying layer. In an embodiment, the alloyed carbon hardmask is alloyed with metallic-carbon fillers. The embodiment further includes patterning the alloyed carbon hardmask and transferring the pattern of the alloyed carbon hardmask into the underlying layer. According to an embodiment, the method may further include removing the metallic component of the metallic-carbon fillers from the alloyed carbon hardmask to form a porous carbon hardmask. Thereafter, the porous hardmask may be removed. In an embodiment, the metallic component of the metallic-carbon fillers may include flowing a processing gas into a chamber that volatizes the metallic component of the metallic-carbon fillers.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Inventors: David KNAPP, Simon HUANG, Jeffrey W. ANTHIS, Philip Alan KRAUS, David THOMPSON
  • Publication number: 20180096847
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Application
    Filed: September 28, 2017
    Publication date: April 5, 2018
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan
  • Patent number: 9922872
    Abstract: Processing methods comprising exposing a substrate to a nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal-containing compound and a second reactive gas to form a metal-containing film on the substrate.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 20, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Knapp, Jeffrey W. Anthis, Xinyu Fu, Srinivas Gandikota
  • Patent number: 9896770
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 20, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Publication number: 20180040486
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Application
    Filed: October 20, 2017
    Publication date: February 8, 2018
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson
  • Publication number: 20180033689
    Abstract: Methods for filing a feature on a substrate surface comprising depositing a conformal nitride film on the substrate surface and at least one feature on the surface, oxidizing a portion of the nitride film to form an asymmetric oxide film on top of the nitride film and etching the oxide film from the nitride film to leave a v-shaped nitride film in the at least one feature.
    Type: Application
    Filed: July 25, 2017
    Publication date: February 1, 2018
    Inventors: Jeffrey W. Anthis, David Thompson
  • Patent number: 9870915
    Abstract: Embodiments include a method of processing a hardmask that includes forming an alloyed carbon hardmask over an underlying layer. In an embodiment, the alloyed carbon hardmask is alloyed with metallic-carbon fillers. The embodiment further includes patterning the alloyed carbon hardmask and transferring the pattern of the alloyed carbon hardmask into the underlying layer. According to an embodiment, the method may further include removing the metallic component of the metallic-carbon fillers from the alloyed carbon hardmask to form a porous carbon hardmask. Thereafter, the porous hardmask may be removed. In an embodiment, the metallic component of the metallic-carbon fillers may include flowing a processing gas into a chamber that volatizes the metallic component of the metallic-carbon fillers.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: January 16, 2018
    Assignee: Applied Materials, Inc.
    Inventors: David Knapp, Simon Huang, Jeffrey W. Anthis, Philip Alan Kraus, David Thompson
  • Publication number: 20170356083
    Abstract: Methods for depositing a film comprising exposing a substrate surface to a metal precursor and a co-reactant to form a metal containing film are described. The metal precursor comprises a metal atom and an allyl ligand, the metal atom comprises one or more lanthanide.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 14, 2017
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege
  • Publication number: 20170358444
    Abstract: Metal coordination complexes comprising a metal atom coordinated to at least one aza-allyl ligand having the structure represented by: where each R1-R4 are independently selected from the group consisting of H, branched or unbranched C1-C6 alkyl, branched or unbranched C1-C6 alkenyl, branched or unbranched C1-C6 alkynyl, cycloalkyl groups having in the range of 1 to 6 carbon atoms, silyl groups and halogens.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 14, 2017
    Inventors: David Thompson, Jeffrey W. Anthis