Patents by Inventor Jian Hao

Jian Hao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11605720
    Abstract: The present disclosure provides a semiconductor device and a method of forming the same. The semiconductor device includes a first channel members being vertically stacked, a second channel members being vertically stacked, an n-type work function layer wrapping around each of the first channel members, a first p-type work function layer over the n-type work function layer and wrapping around each of the first channel members, a second p-type work function layer wrapping around each of the second channel members, a third p-type work function layer over the second p-type work function layer and wrapping around each of the second channel members, and a gate cap layer over a top surface of the first p-type work function layer and a top surface of the third p-type work function layer such that the gate cap layer electrically couples the first p-type work function layer and the third p-type work function layer.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen
  • Publication number: 20230074017
    Abstract: The present disclosure provides an electrical stimulation device. The electrical stimulation device includes a signal receiving circuit and a signal processing circuit. The signal receiving circuit receives and outputs a frequency signal. The signal processing circuit receives the frequency signal and provides an electrical stimulation signal according to the frequency signal.
    Type: Application
    Filed: March 4, 2022
    Publication date: March 9, 2023
    Applicant: GIMER MEDICAL. Co. LTD.
    Inventor: Jian-Hao PAN
  • Publication number: 20230075750
    Abstract: An electrical stimulation device includes a signal receiving circuit, a rectifying circuit and a signal processing circuit. The signal receiving circuit receives and outputs a frequency signal. The rectifying circuit receives the frequency signal and rectifies the frequency signal to generate a rectifying signal. The signal processing circuit receives the rectifying signal to generate an electrical stimulation signal.
    Type: Application
    Filed: March 3, 2022
    Publication date: March 9, 2023
    Applicant: GIMER MEDICAL. Co. LTD.
    Inventor: Jian-Hao PAN
  • Publication number: 20230061018
    Abstract: A method includes providing a structure having a first channel member and a second channel member over a substrate. The first channel member is located in a first region of the structure and the second channel member is located in a second region of the structure. The method also includes forming a first oxide layer over the first channel member and a second oxide layer over the second channel member, forming a first dielectric layer over the first oxide layer and a second dielectric layer over the second oxide layer, and forming a capping layer over the second dielectric layer but not over the first dielectric layer. The method further includes performing an annealing process to increase a thickness of the second oxide layer under the capping layer.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Chih-Wei Lee, Wen-Hung Huang, Kuo-Feng Yu, Jian-Hao Chen, Hsueh-Ju Chen, Zoe Chen
  • Publication number: 20230063857
    Abstract: A device includes a semiconductor substrate, a fin structure on the semiconductor substrate, a gate structure on the fin structure, and a pair of source/drain features on both sides of the gate structure. The gate structure includes an interfacial layer on the fin structure, a gate dielectric layer on the interfacial layer, and a gate electrode layer of a conductive material on and directly contacting the gate dielectric layer. The gate dielectric layer includes nitrogen element.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Chia-Wei Chen, Chih-Yu Hsu, Hui-Chi Chen, Shan-Mei Liao, Jian-Hao Chen, Cheng-Hao Hou, Huang-Chin Chen, Cheng Hong Yang, Shih-Hao Lin, Tsung-Da Lin, Da-Yuan Lee, Kuo-Feng Yu, Feng-Cheng Yang, Chi On Chui, Yen-Ming Chen
  • Publication number: 20230016381
    Abstract: A semiconductor structure includes a semiconductor fin protruding from a substrate; a gate structure engaging with the semiconductor fin. The semiconductor structure also includes an interlayer dielectric (ILD) layer disposed over the substrate and adjacent to the gate structure, where a top surface of the gate structure is below a top surface of the ILD layer; a first metal layer in direct contact with a top surface of the gate structure; a second metal layer disposed over the first metal layer, where the first metal layer is disposed on bottom and sidewall surfaces of the second metal layer, where the bottom surface of the second metal layer has a concave profile, and where the second metal layer differs from the first metal layer in composition; and a gate contact disposed over the second metal layer.
    Type: Application
    Filed: May 6, 2022
    Publication date: January 19, 2023
    Inventors: Wei-Cheng Wang, Shih-Hang Chiu, Kuan-Ting Liu, Chi On Chui, Chia-Wei Chen, Jian-Hao Chen
  • Publication number: 20230010952
    Abstract: A semiconductor device includes stacks of nano-structures that each extend in a first horizontal direction. The stacks each extend in a vertical direction and are separated from one another in a second horizontal direction. A first gate is disposed over a first subset of the stacks. A second gate is disposed over a second subset of the stacks. A first conductive capping layer is disposed over a substantial entirety of an upper surface of the first gate. A second conductive capping layer is disposed over a substantial entirety of an upper surface of the second gate. A dielectric structure is disposed between the first gate and the second gate in the second horizontal direction. The dielectric structure physically and electrically separates the first gate and the second gate. An upper surface of the dielectric structure is substantially free of having the first or second conductive capping layers disposed thereon.
    Type: Application
    Filed: May 5, 2022
    Publication date: January 12, 2023
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen, Chun-Chih Cheng
  • Publication number: 20230011783
    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming an n-type work function layer in a gate trench in a gate structure, wherein the n-type work function layer is formed around first channel layers in a p-type gate region and around second channel layers in an n-type gate region, forming a first metal fill layer in a first gate trench over the n-type work function layer in the p-type gate region and in a second gate trench over the n-type work function layer in the n-type gate region, removing the first metal fill layer from the p-type gate region, removing the n-type work function layer from the p-type gate region, forming a p-type work function layer in the first gate trench of the p-type gate region, and forming a second metal fill layer in the first gate trench of the p-type gate region.
    Type: Application
    Filed: May 6, 2022
    Publication date: January 12, 2023
    Inventors: Shih-Hang Chiu, Kuan-Ting Liu, Chi On Chui, Chia-Wei Chen, Jian-Hao Chen, Cheng-Lung Hung
  • Publication number: 20230010065
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure. The gate structure includes a gate dielectric layer, an n-type work function layer embedded in the gate dielectric layer, a dielectric capping layer embedded in the n-type work function layer, and a p-type work function layer embedded in the dielectric capping layer. A top surface of the gate structure exposes the n-type work function layer, the dielectric capping layer, and the p-type work function layer. The semiconductor structure also includes a first metal cap on the n-type work function layer and a second metal cap on the p-type work function layer. The first metal cap is spaced apart from the second metal cap. without formed on the dielectric capping layer.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 12, 2023
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Wei-Cheng Wang, Chia-Wei Chen, Jian-Hao Chen, Kuan-Ting Liu, Chi On Chui
  • Publication number: 20220384454
    Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20220359683
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a first inter-layer dielectric (ILD) layer formed over the fin structure. The FinFET device structure includes a gate structure formed in the first ILD layer, and a first S/D contact structure formed in the first ILD layer and adjacent to the gate structure. The FinFET device structure also includes a first air gap formed on a sidewall of the first S/D contact structure, and the first air gap is in direct contact with the first ILD layer.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 10, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan LEE, I-Wen WU, Chen-Ming LEE, Jian-Hao CHEN, Fu-Kai YANG, Feng-Cheng YANG, Mei-Yun WANG, Yen-Ming CHEN
  • Publication number: 20220359296
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Publication number: 20220351975
    Abstract: In an embodiment, a structure includes: a semiconductor substrate; a gate spacer over the semiconductor substrate, the gate spacer having an upper portion and a lower portion, a first width of the upper portion decreasing continually in a first direction extending away from a top surface of the semiconductor substrate, a second width of the lower portion being constant along the first direction; a gate stack extending along a first sidewall of the gate spacer and the top surface of the semiconductor substrate; and an epitaxial source/drain region adjacent a second sidewall of the gate spacer.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Yu-Jiun Peng, Hsiu-Hao Tsao, Shu-Han Chen, Chang-Jhih Syu, Kuo-Feng Yu, Jian-Hao Chen, Chih-Hao Yu, Chang-Yun Chang
  • Publication number: 20220336609
    Abstract: A semiconductor device includes a stack of semiconductor layers vertically arranged above a semiconductor base structure, a gate dielectric layer having portions each surrounding one of the semiconductor layers, and a gate electrode surrounding the gate dielectric layer. Each portion of the gate dielectric layer has a top section above the respective semiconductor layer and a bottom section below the semiconductor layer. The top section has a top thickness along a vertical direction perpendicular to a top surface of the semiconductor base structure; and the bottom section has a bottom thickness along the vertical direction. The top thickness is greater than the bottom thickness.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Yung-Hsiang Chan, Wen-Hung Huang, Shan-Mei Liao, Kuei-Lun Lin, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20220328650
    Abstract: A semiconductor device includes an interface layer on a substrate, a gate dielectric layer on the interface layer, and a work function metal layer on the gate dielectric layer. An interface between the interface layer and the gate dielectric layer has a concentration of a dipole-inducing element. The semiconductor device also includes an oxygen blocking layer on the work function metal layer and a metal fill layer on the oxygen blocking layer.
    Type: Application
    Filed: November 22, 2021
    Publication date: October 13, 2022
    Inventors: An-Hung Tai, Yung-Hsiang Chan, Shan-Mei Liao, Hsin-Han Tsai, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20220320337
    Abstract: A transistor is provided. The transistor includes a first source/drain epitaxial feature, a second source/drain epitaxial feature, and two or more semiconductor layers disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature. The two or more semiconductor layers comprise different materials. The transistor further includes a gate electrode layer surrounding at least a portion of the two or more semiconductor layers, wherein the transistor has two or more threshold voltages.
    Type: Application
    Filed: August 24, 2021
    Publication date: October 6, 2022
    Inventors: Chia-Wei CHEN, Chi-Sheng LAI, Shih-Hao LIN, Jian-Hao CHEN, Kuo-Feng YU
  • Publication number: 20220320293
    Abstract: A method includes receiving a workpiece having a first stack of semiconductor layers in a first region and a second stack of semiconductor layers in a second region; forming a first gate dielectric layer surrounding each layer of the first stack and a second gate dielectric layer surrounding each layer of the second stack; forming a first dipole layer surrounding the first gate dielectric layer and merging between vertically adjacent portions of the first gate dielectric layer, and a second dipole layer surrounding the second gate dielectric layer and merging between vertically adjacent portions of the second gate dielectric layer; removing the first dipole layer; after the removing of the first dipole layer, conducting a first annealing on the workpiece; removing a remaining portion of the second dipole layer; and forming a gate electrode layer in the first region and the second region.
    Type: Application
    Filed: September 22, 2021
    Publication date: October 6, 2022
    Inventors: Shan-Mei Liao, Yung-Hsiang Chan, Yao-Teng Chuang, Jian-Hao Chen, Kuo-Feng Yu
  • Publication number: 20220285161
    Abstract: A method includes forming a first gate dielectric and a second gate dielectric over a first semiconductor region and a second semiconductor region, respectively, depositing a lanthanum-containing layer including a first portion and a second portion overlapping the first gate dielectric and the second gate dielectric, respectively, and depositing a hard mask including a first portion and a second portion overlapping the first portion and the second portion of the lanthanum-containing layer, respectively. The hard mask is free from both of titanium and tantalum. The method further includes forming a patterned etching mask to cover the first portion of the hard mask, with the second portion of the hard mask being exposed, removing the second portion of the hard mask and the second portion of the lanthanum-containing layer, and performing an anneal to drive lanthanum in the first portion of the lanthanum-containing layer into the first gate dielectric.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 8, 2022
    Inventors: Kuo-Feng Yu, Chun Hsiung Tsai, Jian-Hao Chen, Hoong Shing Wong, Chih-Yu Hsu
  • Publication number: 20220285514
    Abstract: A semiconductor device includes a plurality of active region structures that each protrude upwards in a vertical direction. The active region structures each extend in a first horizontal direction. The active region structures are separated from one another in a second horizontal direction different from the first horizontal direction. A gate structure is disposed over the active region structures. The gate structure extends in the second horizontal direction. The gate structure partially wraps around each of the active region structures. A conductive capping layer is disposed over the gate structure. A gate via is disposed over the conductive capping layer. A dimension of the conductive capping layer measured in the second horizontal direction is substantially greater than a maximum dimension of the gate via measured in the second horizontal direction.
    Type: Application
    Filed: September 3, 2021
    Publication date: September 8, 2022
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Kuan-Ting Liu, Yen-Ju Chen, Chun-Chih Cheng, Wei-Chen Hsiao
  • Patent number: D964578
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: September 20, 2022
    Assignee: GIMER MEDICAL CO., LTD.
    Inventors: Chen-Tun Wu, Chan-Yi Cheng, Jian-Hao Pan