Patents by Inventor Jin-Gyun Kim

Jin-Gyun Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140053591
    Abstract: An air conditioner includes a housing including a front panel provided with at least one opening, and a rear lower panel disposed at a rear side of the front panel, at least one discharge outlet exposed to a front of the front panel through the opening, at least one suction inlet formed in the housing, at least one heat exchanger to exchange heat with external air through the suction inlet, at least mixed-flow fan rotatably disposed between the heat exchanger and the discharge outlet to suction the air having exchanged heat with the heat exchanger and discharge the air through the discharge outlet, and a drain panel disposed at a lower portion of the heat exchanger to collect condensate produced during heat exchange, and integrated with the rear panel through injection molding.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Moon Sun SHIN, Jae Youn Cho, Jin Gyun Kim, Yeon Seob Yoon
  • Patent number: 8564046
    Abstract: A vertical semiconductor device and a method of making a vertical semiconductor device include a first semiconductor pattern formed on a substrate and a first gate structure formed on a sidewall of the first semiconductor pattern. A second semiconductor pattern is formed on the first semiconductor pattern. A plurality of insulating interlayer patterns is formed on sidewalls of the second semiconductor pattern. The insulating interlayer patterns are spaced apart from each other to define grooves between the insulating interlayer patterns. The plurality of second gate structures is disposed in the grooves, respectively.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Gyun Kim, Myoung-Bum Lee
  • Patent number: 8563421
    Abstract: A method of forming a dielectric layer having an air gap to isolate adjacent wirings or a gate stack of the semiconductor device is provided. A method of fabricating a semiconductor device includes providing a semiconductor substrate on which a plurality of wirings are formed adjacent to one another and forming a dielectric layer filling an upper portion of a space between the adjacent wirings to form air gaps by a thermal chemical vapor deposition method.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: October 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Gyun Kim, Bon-young Koo, Ki-hyun Hwang
  • Publication number: 20130273704
    Abstract: A method of forming a polysilicon layer includes providing a silicon precursor onto an object loaded in a process chamber to form a seed layer. The silicon precursor includes a nitrogen containing silicon precursor and a chlorine containing silicon precursor. The method further includes providing a silicon source on the seed layer.
    Type: Application
    Filed: December 17, 2012
    Publication date: October 17, 2013
    Inventors: Jung-Geun JEE, Jin-Gyun KIM, Ji-Hoon CHOI, Ki-Hyun HWANG
  • Patent number: 8497555
    Abstract: A vertical memory device may include a substrate, a first selection line on the substrate, a plurality of word lines on the first selection line, a second selection line on the plurality of word lines, and a semiconductor channel. The first selection line may be between the plurality of word lines and the substrate, and the plurality of word lines may be between the first and second selection lines. Moreover, the first and second selection lines and the plurality of word lines may be spaced apart in a direction perpendicular with respect to a surface of the substrate. The semiconductor channel may extend away from the surface of the substrate adjacent sidewalls of the first and second selection lines and the plurality of word lines. In addition, portions of the semiconductor channel adjacent the second selection line may be doped with indium and/or gallium. Related methods are also discussed.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Gyun Kim, Ki-Hyun Hwang, Sung-Hae Lee, Ji-Hoon Choi
  • Patent number: 8445367
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Tae Noh, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang
  • Publication number: 20130089974
    Abstract: A method of manufacturing a non-volatile memory device, wherein the method includes: alternately stacking interlayer sacrificial layers and interlayer insulating layers on a substrate; forming a plurality of first openings that pass through the interlayer sacrificial layers and the interlayer insulating layers to expose a first portion of the substrate; forming a semiconductor region on a side wall and a lower surface of each of the first openings; forming an embedded insulating layer in each of the first openings; forming a first conductive layer on the embedded insulating layer inside each of the first openings; forming a second opening exposing a second portion of the substrate and forming an impurity region on the second portion; forming a metal layer to cover the first conductive layer and the impurity region; and forming the metal layer into a metal silicide layer.
    Type: Application
    Filed: September 11, 2012
    Publication date: April 11, 2013
    Inventors: Sung-hae Lee, Ki-hyun Hwang, Jin-gyun Kim
  • Publication number: 20130065369
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 14, 2013
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jung-Ho Kim, Jin-Gyun Kim, Jae-Jin Shin, Ji-Hoon Choi
  • Publication number: 20130032878
    Abstract: According to example embodiments, a semiconductor device includes horizontal patterns stacked on a substrate. The horizontal patterns define an opening through the horizontal patterns. A first core pattern is in the opening. A second core pattern is in the opening on the first core pattern. A first active pattern is between the first core pattern and the horizontal patterns. A second active pattern containing a first element is between the second core pattern and the horizontal patterns. The second active pattern contains the first element at a higher concentration than a concentration of the first element in the second core pattern.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 7, 2013
    Inventors: Bi-O Kim, Byong-Ju Kim, Jung-Geun Jee, Jin-Gyun Kim, Jae-Young Ahn, Ki-Hyun Hwang
  • Patent number: 8309405
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jin-Gyun Kim, Jae-Jin Shin, Jung-Ho Kim, Ji-Hoon Choi
  • Publication number: 20120280304
    Abstract: A non-volatile memory device having a vertical structure includes a semiconductor layer, a sidewall insulation layer extending in a vertical direction on the semiconductor layer, and having one or more protrusion regions, first control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of portions of the sidewall insulation layer where the one or more protrusion regions are not formed and second control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of the one or more protrusion regions.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 8, 2012
    Inventors: SANG-HOON LEE, JIN-GYUN KIM, KOONG-HYUN NAM, KI-HYUN HWANG, HUN-HYEONG LIM, DONG-KYUM KIM
  • Publication number: 20120267702
    Abstract: A device includes a first GSL, a plurality of first word lines, a first SSL, a plurality of first insulation layer patterns, and a first channel. The first GSL, the first word lines, and the first SSL are spaced apart from each other on a substrate in a first direction perpendicular to a top surface of a substrate. The first insulation layer patterns are between the first GSL, the first word lines and the first SSL. The first channel on the top surface of the substrate extends in the first direction through the first GSL, the first word lines, the first SSL, and the first insulation layer patterns, and has a thickness thinner at a portion thereof adjacent to the first SSL than at portions thereof adjacent to the first insulation layer patterns.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 25, 2012
    Inventors: Jung-Geun JEE, Jin-Gyun Kim, Jun-Kyu Yang, Ji-Hoon Choi, Dong-Kyum Kim, Ki-Hyun Hwang
  • Publication number: 20120153291
    Abstract: A vertical memory device may include a substrate, a first selection line on the substrate, a plurality of word lines on the first selection line, a second selection line on the plurality of word lines, and a semiconductor channel. The first selection line may be between the plurality of word lines and the substrate, and the plurality of word lines may be between the first and second selection lines. Moreover, the first and second selection lines and the plurality of word lines may be spaced apart in a direction perpendicular with respect to a surface of the substrate. The semiconductor channel may extend away from the surface of the substrate adjacent sidewalls of the first and second selection lines and the plurality of word lines. In addition, portions of the semiconductor channel adjacent the second selection line may be doped with indium and/or gallium. Related methods are also discussed.
    Type: Application
    Filed: November 17, 2011
    Publication date: June 21, 2012
    Inventors: Jin-Gyun KIM, Ki-Hyun HWANG, Sung-Hae LEE, Ji-Hoon CHOI
  • Publication number: 20120156848
    Abstract: A method of manufacturing a non-volatile memory device includes alternately stacking interlayer sacrificial layers and interlayer insulating layers on a substrate, forming first openings exposing the substrate, forming sidewall insulating layers on sidewalls of the first openings, and forming channel regions on the sidewall insulating layers. The first openings penetrate the interlayer sacrificial layers and the interlayer insulating layers. The sidewall insulating layers have different thicknesses according to distances from the substrate.
    Type: Application
    Filed: September 22, 2011
    Publication date: June 21, 2012
    Inventors: Sang-ryol YANG, Ki-hyun HWANG, Seung-bae PARK, Jin-gyun KIM, Woong LEE, Jung-geun JEE, Ji-hoon CHOI
  • Publication number: 20120129356
    Abstract: A method of forming a dielectric layer having an air gap to isolate adjacent wirings or a gate stack of the semiconductor device is provided. A method of fabricating a semiconductor device includes providing a semiconductor substrate on which a plurality of wirings are formed adjacent to one another and forming a dielectric layer filling an upper portion of a space between the adjacent wirings to form air gaps by a thermal chemical vapor deposition method.
    Type: Application
    Filed: February 1, 2012
    Publication date: May 24, 2012
    Inventors: Jin-Gyun KIM, Bon-young Koo, Ki-hyun Hwang
  • Publication number: 20120115293
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 10, 2012
    Inventors: Jin-Tae NOH, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang
  • Publication number: 20120083077
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Application
    Filed: September 8, 2011
    Publication date: April 5, 2012
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jin-Gyun Kim, Jae-Jin Shin, Jung-Ho Kim, Ji-Hoon Choi
  • Patent number: 8129264
    Abstract: A method of forming a dielectric layer having an air gap to isolate adjacent wirings or a gate stack of the semiconductor device is provided. A method of fabricating a semiconductor device includes providing a semiconductor substrate on which a plurality of wirings are formed adjacent to one another and forming a dielectric layer filling an upper portion of a space between the adjacent wirings to form air gaps by a thermal chemical vapor deposition method.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: March 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Gyun Kim, Bon-young Koo, Ki-hyun Hwang
  • Publication number: 20120052673
    Abstract: A method for fabricating a nonvolatile memory device is disclosed. The method includes forming a first structure for a common source line on a semiconductor substrate, the first structure extending along a first direction, forming a mold structure by alternately stacking a plurality of sacrificial layers and a plurality of insulating layers on the semiconductor substrate, forming a plurality of openings in the mold structure exposing a portion of the first structure, and forming a first memory cell string at a first side of the first structure and a second memory cell string at a second, opposite side of the first structure. The plurality of openings include a first through-hole and a second through-hole, each through-hole passing through the plurality of sacrificial layers and plurality of insulating layers, and the first through-hole and the second through-hole overlap each other in the first direction.
    Type: Application
    Filed: August 5, 2011
    Publication date: March 1, 2012
    Inventors: Dong-Chul Yoo, Ki-Hyun Hwang, Han-Mei Choi, Jin-Gyun Kim
  • Publication number: 20120001264
    Abstract: Provided according to embodiments of the present invention are methods of fabricating semiconductor devices using an etchant. In some embodiments, the etchant may be highly selective and may act to reduce interference between wordlines in the semiconductor device. In some embodiments of the invention, provided are methods of fabricating a semiconductor device that include forming a plurality of gate patterns on a substrate; forming first insulation layers between the gate patterns; wet-etching the first insulation layers to form first insulation layer residues; and forming air gaps between the plurality of gate patterns. Related etchant solutions and semiconductor devices are also provided.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Inventors: Hong-suk Kim, Jin-gyun Kim, Hun-Hyeong Lim, Ki-hyun Hwang, Jae-Young Ahn, Jun-kyu Yang