Patents by Inventor Jin Yim

Jin Yim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10347615
    Abstract: Some forms include an electronic package that includes a photo-detecting receiver IC and a receiver IC. The electronic package includes a mold that encloses the photo-detecting receiver IC and the receiver IC. The photo-detecting receiver IC and the receiver IC are adjacent to one another without touching one another. Other forms include an optical module that includes a substrate and an electronic package mounted on the substrate. The electronic package includes a photo-detecting receiver IC and a receiver IC that are enclosed within a mold. The photo-detecting receiver IC and the receiver IC are adjacent to one another without touching. Other forms include a method that includes forming a mold that includes a photo-detecting receiver IC and a receiver IC that are adjacent to one another without touching. The photo-detecting receiver IC includes optical components that are exposed on a surface of the mold.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: July 9, 2019
    Assignee: Intel Corporation
    Inventors: Myung Jin Yim, Jay S. Lee, Jong-Min Hong
  • Patent number: 10337973
    Abstract: Disclosed is a system for estimating a snow depth including: an optical disdrometer for acquiring information on diameters of snow particles and particle number concentration; a laser snow depth gauge for measuring the height of snow accumulated through a laser beam type sensor to provide an observed stop depth; an estimated snow depth equation calculator for determining an optimal index for the diameters of the snow particles provided by the optical disdrometer, substituting the optimal index for a snow depth calculation equation as a first mathematical equation to calculate a computed snow depth, obtaining correlation between the observed snow depth and the computed snow depth, and calculating a regression equation between the observed snow depth and the computed snow depth as an estimated snow depth equation; and a snow depth estimator for estimating the snow depth on the basis of the estimated snow depth equation, and the first mathematical equation.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: July 2, 2019
    Assignee: Korea Meteorological Administration
    Inventors: Jiwon Choi, Ki-Ho Chang, Eunsil Jung, Jin-Yim Jeong, Baek-Jo Kim
  • Publication number: 20190172821
    Abstract: In one embodiment, a microelectronic package structure comprises a substrate comprising at least one waveguide, a first instrument integrated circuit coupled to the substrate, a photonic engine coupled to the substrate and comprising an integrated circuit body, a transmit die, and a receive die. The photonic engine is positioned adjacent the at least one waveguide such that optical signals may be exchanged between the at least one waveguide and the transmit die and the at least one waveguide and the receive die. Other embodiments may be described.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Applicant: Intel Corporation
    Inventor: Myung Jin Yim
  • Publication number: 20190164618
    Abstract: A nonvolatile memory device includes multiple memory cells including first memory cells and second memory cells. A method of programming the nonvolatile memory device includes: performing first programming to apply a programming forcing voltage to a bit line of each of the first memory cells; and dividing the second memory cells into a first cell group, a second cell group, and a third cell group, based on a threshold voltage of the second memory cells after performing the first programming. The method also includes performing second programming to apply a programming inhibition voltage to the bit line of each of the first memory cells and a bit line of each of memory cells of the first cell group. A level of the programming forcing voltage is lower than that of the programming inhibition voltage.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Inventors: SUNG-WON YUN, HYE-JIN YIM
  • Publication number: 20190147965
    Abstract: A method is provided for operating a memory device. The method includes counting, from among memory cells, a number of first off-cells with respect to a first reading voltage and a number of second off-cells with respect to a second reading voltage, comparing the number of first off-cells and the number of second off-cells, and determining, based on a result of the comparing, whether a programming error exists in a storage region in which the memory cells are included.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Inventors: HYE-JIN YIM, SANG-YONG YOON
  • Patent number: 10242976
    Abstract: In one embodiment, a microelectronic package structure comprises a substrate comprising at least one waveguide, a first instrument integrated circuit coupled to the substrate, a photonic engine coupled to the substrate and comprising an integrated circuit body, a transmit die. and a receive die. The photonic engine is positioned adjacent the at least one waveguide such that optical signals may be exchanged between the at least one waveguide and the transmit die and the at least one waveguide and the receive die. Other embodiments may be described.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: March 26, 2019
    Assignee: INTEL CORPORATION
    Inventor: Myung Jin Yim
  • Patent number: 10217517
    Abstract: A method is provided for operating a memory device. The method includes counting, from among memory cells, a number of first off-cells with respect to a first reading voltage and a number of second off-cells with respect to a second reading voltage, comparing the number of first off-cells and the number of second off-cells, and determining, based on a result of the comparing, whether a programming error exists in a storage region in which the memory cells are included.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: February 26, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Jin Yim, Sang-Yong Yoon
  • Publication number: 20190006549
    Abstract: Optoelectronic device modules having a silicon photonics transmitter die connected to a silicon interposer are described. In an example, the optoelectronic device module includes a silicon photonics transmitter die connected to a silicon interposer, and the silicon interposer is disposed between the silicon photonics transmitter die and a substrate. The silicon interposer provides an electrical interconnect between the silicon photonics transmitter die and the substrate, and reduces a likelihood that a hybrid silicon laser on the silicon photonics transmitter die will be damaged during module operation.
    Type: Application
    Filed: April 1, 2016
    Publication date: January 3, 2019
    Inventors: Myung Jin YIM, Seungjae LEE, Sandeep RAZDAN
  • Patent number: 10152380
    Abstract: A memory device includes a memory cell array including a plurality of memory cells; a counting circuit configured to obtain a counting result by performing a counting operation on data read from the plurality of memory cells; and a control logic configured to perform a data restoring operation based on the counting result without involvement of a memory controller.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 11, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hye-jin Yim, Seung-jae Lee, Il-han Park, Kang-bin Lee
  • Publication number: 20180348434
    Abstract: Embodiments herein may include apparatuses, systems, and processes related to a photonic die package with an edge lens that includes a photonic integrated circuit (IC) die, a lens coupled to the photonic IC die and disposed at an edge of the package to provide an optical path at the edge of the package for photon signals generated or received by the photonic IC die, and an electronic IC die coupled to the photonic IC die, where the electronic IC die is to process electrical signals received from the photonic IC die, and where the electronic IC die and the photonic IC die are in a stack formation to facilitate thermal energy conduction from the electronic IC die to the photonic IC die. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 6, 2018
    Inventors: Myung Jin Yim, Sang Yup Kim, Woosung Kim
  • Patent number: 10128148
    Abstract: Methods for fabricating semiconductor devices may provide enhanced performance and reliability by recovering quality of a low-k insulating film damaged by a plasma process. A method may include forming a first interlayer insulating film having a trench therein on a substrate, filling at least a portion of the trench with a metal wiring region, exposing a surface of the metal wiring region and a surface of the first interlayer insulating film to a plasma in a first surface treatment process, then exposing the surface of the first interlayer insulating film to a recovery gas containing a methyl group (—CH3) in a second surface treatment process, and then forming an etch stop layer on the metal wiring region and the first interlayer insulating film.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: November 13, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Viet Ha Nguyen, Nae In Lee, Thomas Oszinda, Byung Hee Kim, Jong Min Baek, Tae Jin Yim
  • Patent number: 10109772
    Abstract: Disclosed are a light emitting device package and a lighting apparatus. The light emitting device package includes a substrate, a light emitting structure disposed under the substrate and including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, a first electrode connected to the first conductive type semiconductor layer exposed through at least one contact hole, a second electrode connected to the second conductive type semiconductor layer, a first insulating layer configured to extend from under the light emitting structure to a space between a side of the light emitting structure and the first electrode and configured to reflect light, and a reflective layer disposed under the first insulating layer.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 23, 2018
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Sung Ho Jung, Bum Jin Yim, Sang Youl Lee
  • Patent number: 10096549
    Abstract: Semiconductor devices including an interconnection structure are provided. The devices may include an etch stop layer on a lower structure including a contact structure, a buffer layer on the etch stop layer, an intermetal insulating layer including a low-k dielectric material on the buffer layer. The intermetal insulating layer may include a first region having a first dielectric constant and a second region having a second dielectric constant different from the first dielectric constant. The device may also include interconnection structure including a plug portion electrically connected to the contact structure and an interconnection portion on the plug portion. The plug portion may include a first portion extending through the etch stop layer and a second portion that is in the intermetal insulating layer and has a width greater than a width of the first portion. The interconnection portion may include opposing lateral surfaces surrounded by the intermetal insulating layer.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: October 9, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung Hee Kim, Thomas Oszinda, Deok Young Jung, Jong Min Baek, Tae Jin Yim
  • Publication number: 20180246014
    Abstract: Provided are an automatic precipitation sampler system and an operation method thereof. The automatic precipitation sampler system, includes a main body having an water receiving port provided in the upper portion thereof, a driving unit disposed in the main body, a circular table disposed in the main body and rotating by the driving unit, a plurality of sample containers arranged at uniform intervals from each other at positions spaced away from the center of the circular table by a predetermined distance in the radial direction of the circular table, and a plurality of funnels arranged on top of each of the plurality of sample containers such that any one of the plurality of funnels is aligned with the water receiving port.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 30, 2018
    Inventors: Jung-Ho LEE, Ha-Young YANG, Ki-Ho CHANG, Jeong Hwan CHOI, Jin-Yim JEONG, Baek-Jo KIM, Yong-Tea SUNWOO, Hyun-Chul SHIN, Cheol-Ho HAN
  • Publication number: 20180229421
    Abstract: A molding compound comprising a resin, a filler, and a carbon nano-tube dispersion is disclosed. The carbon nano-tube dispersion achieves a low average agglomeration size in the molding compound thereby providing desirable electro-mechanical properties and laser marking compatibility. A shallow laser mark may be formed in a mold cap with a maximum depth of less than 10 microns.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: Myung Jin Yim, Jason M. Brand
  • Publication number: 20180212111
    Abstract: A light-emitting device package of an embodiment includes a light-emitting structure including first and second conductive semiconductor layers and an active layer disposed between the first and second conductive semiconductor layers; a light-transmitting electrode layer disposed on the second conductive semiconductor layer; a passivation layer disposed on the second conductive semiconductor layer and a mesa-exposed portion of the first conductive semiconductor layer; a reflection layer disposed from the top of the light-transmitting electrode layer to the top of the passivation layer in a horizontal direction perpendicular to the thickness direction of the light-emitting structure; and a conductive capping layer disposed on the reflection layer.
    Type: Application
    Filed: July 21, 2016
    Publication date: July 26, 2018
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Bum Jin YIM
  • Publication number: 20180188448
    Abstract: In one embodiment, a microelectronic package structure comprises a substrate comprising at least one waveguide, a first instrument integrated circuit coupled to the substrate, a photonic engine coupled to the substrate and comprising an integrated circuit body, a transmit die. and a receive die. The photonic engine is positioned adjacent the at least one waveguide such that optical signals may be exchanged between the at least one waveguide and the transmit die and the at least one waveguide and the receive die. Other embodiments may be described.
    Type: Application
    Filed: December 31, 2016
    Publication date: July 5, 2018
    Applicant: Intel Corporation
    Inventor: Myung Jin Yim
  • Patent number: 10014654
    Abstract: Optoelectronic packaging assemblies are provided that are useful for optical data, transfer In high performance computing applications, board to board in data centers, memory to CPU, switch/FPGA (field programmable gate array) for chip to chip interconnects, and memory extension. The packaging assemblies provide fine pitch flip chip interconnects and chip stacking assemblies with good thermo-mechanical reliability. Underfill dams and optical overhang regions and are provided for optical interconnection.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: July 3, 2018
    Assignee: Intel Corporation
    Inventors: Myung Jin Yim, Ansheng Liu, Valentin Yepanechnikov
  • Patent number: 10001751
    Abstract: Various example embodiments of the present disclosure provide an electronic device including: a housing including a substantially circular opening and a first surface facing in a first direction; a wearing structure configured to enable the electronic device to be removably worn on a part of a human body and connected to the housing; a display disposed in the opening; an annulus installed on the first surface and configured to be rotatable along a periphery of the opining, the annulus including a second surface facing a second direction opposite the first direction; at least one spacer interposed between a part of the first surface and the second surface of the annulus; and a circuit configured to detect a rotation of the annular member and to change the display at least in part based on the rotation.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: June 19, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wook-Dam Jung, Yongcheon Kang, Dong-Jin Yim, Hyun-Seok Chang, Sanghyuck Jung, Jeongeun Kim, Byoung-Uk Yoon
  • Publication number: 20180136105
    Abstract: Disclosed is a system for estimating a snow depth including: an optical disdrometer for acquiring information on diameters of snow particles and particle number concentration; a laser snow depth gauge for measuring the height of snow accumulated through a laser beam type sensor to provide an observed stop depth; an estimated snow depth equation calculator for determining an optimal index for the diameters of the snow particles provided by the optical disdrometer, substituting the optimal index for a snow depth calculation equation as a first mathematical equation to calculate a computed snow depth, obtaining correlation between the observed snow depth and the computed snow depth, and calculating a regression equation between the observed snow depth and the computed snow depth as an estimated snow depth equation; and a snow depth estimator for estimating the snow depth on the basis of the estimated snow depth equation, and the first mathematical equation.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 17, 2018
    Applicant: Korea Meteorological Administration
    Inventors: Jiwon Choi, Ki-Ho Chang, Eunsil Jung, Jin-Yim Jeong, Baek-Jo Kim