Patents by Inventor Jingwei Bai

Jingwei Bai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240011089
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 11, 2024
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Publication number: 20230340593
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.
    Type: Application
    Filed: May 18, 2023
    Publication date: October 26, 2023
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 11732301
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 22, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Patent number: 11692223
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods, including methods for modifying immobilized capture primers comprising: a) contacting a substrate comprising a plurality of immobilized capture primers with a plurality of template nucleic acids under conditions sufficient for hybridization to produce one or more immobilized template nucleic acids, and b) extending one or more immobilized capture primers to produce one or more immobilized extension products complementary to the one or more template nucleic acid.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: July 4, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Publication number: 20220365094
    Abstract: The present invention provides a method for controlling a speed of a polypeptide passing through a nanopore and use thereof in determining an amino acid sequence of a polypeptide. Specifically, the method comprises: conjugating a polynucleotide to the polypeptide to give a polynucleotide-polypeptide conjugate, and applying a voltage across the nanopore in the presence of a polynucleotide binding enzyme to move the conjugate through the nanopore. The polynucleotide binding enzyme controls the movement of the polynucleotide and thereby controls the movement of the conjugated polypeptide in the nanopore, thus controlling the speed of the polypeptide passing through the nanopore. While controlling the speed of the polypeptide, the present invention reads a nanopore current signal during the process of the polypeptide passing through the nanopore to give an electrical signal of the polypeptide.
    Type: Application
    Filed: June 24, 2020
    Publication date: November 17, 2022
    Inventors: Jingwei BAI, Zhijie CHEN
  • Publication number: 20210269877
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 2, 2021
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Patent number: 10967372
    Abstract: An apparatus for an electro-fluidic flow probe includes a body portion including an electro-fluidic bias tee for receiving (i) a fluid electrolyte and (ii) an electrical connection for providing an electrical potential to the fluid electrolyte; a first inlet including a tube extending from the first inlet to an outlet through the electro-fluidic bias tee; and a second inlet including the electrical connection having a wire that extends from the second inlet to the outlet through the electro-fluidic bias tee to transfer the electrical potential to a device under test.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Andre Nicolas Astier, Jingwei Bai, Young Hoon Kwark, Stanislav Polonsky, Joshua T. Smith
  • Patent number: 10967373
    Abstract: An apparatus for an electro-fluidic flow probe includes a body portion including an electro-fluidic bias tee for receiving (i) a fluid electrolyte and (ii) an electrical connection for providing an electrical potential to the fluid electrolyte; a first inlet including a tube extending from the first inlet to an outlet through the electro-fluidic bias tee; and a second inlet including the electrical connection having a wire that extends from the second inlet to the outlet through the electro-fluidic bias tee to transfer the electrical potential to a device under test.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Andre Nicolas Astier, Jingwei Bai, Young Hoon Kwark, Stanislav Polonsky, Joshua T. Smith
  • Patent number: 10960377
    Abstract: Provided herein are methods and compositions for placing single target molecules on a patterned substrate.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: March 30, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Kevin L. Gunderson, Jingwei Bai, Boyan Boyanov
  • Patent number: 10961576
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: March 30, 2021
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Publication number: 20200348257
    Abstract: A kit includes an array of charge sensors attached to a solid-phase substrate , wherein individual charge sensors in the array respectively comprise a channel and a polymerase and are located at different addressable locations on the solid-phase substrate; and a liquid comprising a plurality of different nucleic acids, each of the different nucleic acids including a unique label to be detected by a charge sensor of the array.
    Type: Application
    Filed: March 20, 2020
    Publication date: November 5, 2020
    Inventors: Boyan BOYANOV, Jeffrey G. MANDELL, Jingwei BAI, Kevin L. GUNDERSON, Cheng-Yao CHEN, Michel PERBOST
  • Publication number: 20200318182
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 8, 2020
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 10787704
    Abstract: The present disclosure provides a method for sequencing nucleic acids. The method can include polymerase catalyzed incorporation of nucleotides into a nascent nucleic acid strand against a nucleic acid template, wherein the polymerase is attached to a charge sensor that detects nucleotide incorporation events. One or more non-natural nucleotide types that each produce a unique signatures at the charge sensor can be used to uniquely identify different nucleotides in the template nucleic acid.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: September 29, 2020
    Assignees: ILLUMINA, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kevin L Gunderson, Jingwei Bai, Cheng-Yao Chen, Jeffrey G Mandell, Sergio Peisajovich, Philip G Collins, Gregory A Weiss, Boyan Boyanov
  • Publication number: 20200190577
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 18, 2020
    Inventors: BOYAN BOYANOV, JEFFREY G. MANDELL, KEVIN L. GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Patent number: 10619204
    Abstract: Embodiments of the present disclosure relate to methods for capturing and amplifying target polynucleotides on a solid surface, in particular in a well in a microarray, wherein the microarray may comprise a) a substrate comprising at least one well, a surface surrounding the well and an inner well surface; b) a first layer covering the inner well surface and comprising at least one first capture primer pair; and c) a second layer covering the first layer and the surface surrounding the well.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 14, 2020
    Assignee: Illumina Cambridge Limited
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 10605766
    Abstract: A method of nucleic acid sequencing. The method can include the steps of (a) providing a polymerase tethered to a solid support charge sensor; (b) providing one or more nucleotides, whereby the presence of the nucleotide can be detected by the charge sensor; and (c) detecting incorporation of the nucleotide into a nascent strand complementary to a template nucleic acid.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: March 31, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Boyan Boyanov, Jeffrey G. Mandell, Jingwei Bai, Kevin L. Gunderson, Cheng-Yao Chen, Michel Perbost
  • Patent number: 10545115
    Abstract: A method of nucleic acid sequencing. The method can include the steps of (a) providing a polymerase tethered to a solid support charge sensor; (b) providing one or more nucleotides, whereby the presence of the nucleotide can be detected by the charge sensor; and (c) detecting incorporation of the nucleotide into a nascent strand complementary to a template nucleic acid.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: January 28, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Boyan Boyanov, Jeffrey G. Mandell, Jingwei Bai, Kevin L. Gunderson, Cheng-Yao Chen, Michel Perbost
  • Patent number: 10519499
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: December 31, 2019
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Publication number: 20190374923
    Abstract: Provided herein are methods and compositions for placing single target molecules on a patterned substrate.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventors: Kevin L. Gunderson, Jingwei Bai, Boyan Boyanov
  • Patent number: 10464061
    Abstract: A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: November 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORTAION
    Inventors: Jingwei Bai, Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang