Patents by Inventor Jingwei Bai

Jingwei Bai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140370326
    Abstract: A method for forming porous metal structures and the resulting structure may include forming a metal structure above a substrate. A masking layer may be formed above the metal structure, and then etched using a reactive ion etching process with a mask etchant and a metal etchant. Etching the masking layer may result in the formation of a plurality of pores in the metal structure. In some embodiments, the metal structure may include a first end region, a second end region, and an intermediate region. Before etching the masking layer, a protective layer may be formed above the first end region and the second end region, so that the plurality of pores is contained within the intermediate region. In some embodiments, the intermediate metal region may be a nanostructure such as a nanowire.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Yann Astier, Jingwei Bai, Robert L. Bruce, Aaron D. Franklin, Joshua T. Smith
  • Patent number: 8901621
    Abstract: Nanochannel sensors and methods for constructing nanochannel sensors. An example method includes forming a sacrificial line on an insulating layer, forming a dielectric layer, etching a pair of electrode trenches, forming a pair of electrodes, and removing the sacrificial line to form a nanochannel. The dielectric layer may be formed on insulating layer and around the sacrificial line. The pair of electrode trenches may be etched in the dielectric layer on opposite sides of the sacrificial line. The pair of electrodes may be formed by filling the electrode trenches with electrode material. The sacrificial line may be removed by forming a nanochannel between the at least one pair of electrodes.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jingwei Bai, Evan G. Colgan, Christopher V. Jahnes, Stanislav Polonsky
  • Publication number: 20140302675
    Abstract: A nanogap of controlled width in-between noble metals is produced using sidewall techniques and chemical-mechanical-polishing. Electrical connections are provided to enable current measurements across the nanogap for analytical purposes. The nanogap in-between noble metals may also be formed inside a Damascene trench. The nanogap in-between noble metals may also be inserted into a crossed slit nanopore framework. A noble metal layer on the side of the nanogap may have sub-layers serving the purpose of multiple simultaneous electrical measurements.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: International Business Machines Corporation
    Inventors: Yann Astier, Jingwei Bai, Michael F. Lofaro, Satyavolu S. Papa Rao, Joshua T. Smith, Chao Wang
  • Publication number: 20140147835
    Abstract: A mechanism is provided for base recognition in a nanopore detection system. A complex including a long chain polynucleotide and a motor molecule is formed. The complex is localized in a nanopore of the nanopore detection system. A conformation change of the motor molecule is detected while localized in the nanopore by an ionic current having an amplitude and duration time. The detected conformation change includes the motor molecule forming a base pair by incorporating a single base of the long chain polynucleotide and by synthesizing a complementary base of the single base. An identity of the single base of the long change polynucleotide is determined from the amplitude and the duration time of the conformation change of the motor molecule for the base pair.
    Type: Application
    Filed: August 19, 2013
    Publication date: May 29, 2014
    Applicant: International Business Machines Corporation
    Inventors: Yann Astier, Jingwei Bai, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20140147833
    Abstract: A mechanism is provided for base recognition in a nanopore detection system. A complex including a long chain polynucleotide and a motor molecule is formed. The complex is localized in a nanopore of the nanopore detection system. A conformation change of the motor molecule is detected while localized in the nanopore by an ionic current having an amplitude and duration time. The detected conformation change includes the motor molecule forming a base pair by incorporating a single base of the long chain polynucleotide and by synthesizing a complementary base of the single base. An identity of the single base of the long change polynucleotide is determined from the amplitude and the duration time of the conformation change of the motor molecule for the base pair.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, Jingwei Bai, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20140077161
    Abstract: A graphene transistor includes: (1) a substrate; (2) a source electrode disposed on the substrate; (3) a drain electrode disposed on the substrate; (4) a graphene channel disposed on the substrate and extending between the source electrode and the drain electrode; and (5) a top gate disposed on the graphene channel and including a nanostructure.
    Type: Application
    Filed: March 2, 2012
    Publication date: March 20, 2014
    Inventors: Xiangfeng Duan, Yu Huang, Lei Liao, Jingwei Bai
  • Publication number: 20140004300
    Abstract: For a cross slit structure that contains a nanopore, a layer is produced including a first spacer that penetrates through the layer. A subsequent layer over, and in direct contact with, the layer is also produced. The subsequent layer includes a second spacer penetrating through the subsequent layer. The first spacer and the second spacer are selectively etched away, creating a first slit and a second slit. Respective projections of these slits are crossing one another at an angle. At such a crossing an opening is formed which provides for fluid connectivity through the two layers.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jingwei Bai, Stefan Harrer, Stanislav Polonsky, Stephen M. Rossnagel
  • Publication number: 20140001149
    Abstract: For a cross slit structure that contains a nanopore, a layer is produced including a first spacer that penetrates through the layer. A subsequent layer over, and in direct contact with, the layer is also produced. The subsequent layer includes a second spacer penetrating through the subsequent layer. The first spacer and the second spacer are selectively etched away, creating a first slit and a second slit. Respective projections of these slits are crossing one another at an angle. At such a crossing an opening is formed which provides for fluid connectivity through the two layers.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jingwei Bai, Stefan Harrer, Stanislav Polonsky, Stephen M. Rossnagel
  • Publication number: 20120301953
    Abstract: A graphene nanomesh includes a sheet of graphene having a plurality of periodically arranged apertures, wherein the plurality of apertures have a substantially uniform periodicity and substantially uniform neck width. The graphene nanomesh can open up a large band gap in a sheet of graphene to create a semiconducting thin film. The periodicity and neck width of the apertures formed in the graphene nanomesh may be tuned to alter the electrical properties of the graphene nanomesh. The graphene nanomesh is prepared with block copolymer lithography. Graphene nanomesh field-effect transistors (FETs) can support currents nearly 100 times greater than individual graphene nanoribbon devices and the on-off ratio, which is comparable with values achieved in nanoribbon devices, can be tuned by varying the neck width. The graphene nanomesh may also be incorporated into FET-type sensor devices.
    Type: Application
    Filed: January 28, 2011
    Publication date: November 29, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Xiangfeng Duan, Yu Huang, Jingwei Bai