Patents by Inventor Jingyun Zhang

Jingyun Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10559692
    Abstract: A thin layer of lattice matched wide bandgap semiconductor material having semi-insulating properties is employed as an isolation layer between the substrate and a vertical stack of suspended semiconductor channel material nanosheets. The presence of such an isolation layer eliminates the parasitic leakage path between the source region and the drain region that typically occurs through the substrate, while not interfering with the CMOS device that is formed around the semiconductor channel material nanosheets.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Xin Miao, Jingyun Zhang, Choonghyun Lee
  • Publication number: 20200044023
    Abstract: Parasitic transistor formation under a semiconductor containing nanosheet device is eliminated by forming an airgap between the source/drain regions of the semiconductor containing nanosheet device and the semiconductor substrate. The airgap is created by forming a sacrificial germanium-containing semiconductor material at the bottom of the source/drain regions prior to the epitaxial growth of the source/drain regions from physically exposed sidewalls of each semiconductor channel material nanosheet of a nanosheet material stack. After inner dielectric spacer formation, the sacrificial germanium-containing semiconductor material can be reflown to seal any possible openings to the semiconductor substrate. The source/drain regions are then epitaxially grown and thereafter, the sacrificial germanium-containing semiconductor material is removed from the structure creating the airgap between the source/drain regions of the semiconductor containing nanosheet device and the semiconductor substrate.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 6, 2020
    Inventors: Alexander Reznicek, Choonghyun Lee, Xin Miao, Jingyun Zhang
  • Patent number: 10553678
    Abstract: A semiconductor structure having electrostatic control and a low threshold voltage is provided. The structure includes an nFET containing vertically stacked and suspended Si channel material nanosheets stacked vertically above a pFET containing vertically stacked and suspended SiGe channel material nanosheets. The vertically stacked nFET and pFET include a single work function metal.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Jingyun Zhang, Pouya Hashemi, Takashi Ando, Alexander Reznicek
  • Patent number: 10553696
    Abstract: Semiconductor devices and method of forming the same include forming a stack of vertically aligned, alternating layers including sacrificial layers and channel layers. The sacrificial layers are recessed relative to the channel layers to form recesses. A dual-layer dielectric is deposited. The dual-layer dielectric includes a first dielectric material formed conformally on surfaces of the recesses and a second dielectric material filling a remainder of the recesses. The first dielectric material is recessed relative to the second dielectric material. The second dielectric material is etched away to create air gaps. Outer spacers are formed using a third dielectric material that pinches off, preventing the third dielectric material from filling the air gaps.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Patent number: 10553679
    Abstract: A semiconductor structure containing a gate-all-around nanosheet field effect transistor having a self-limited inner spacer composed of a rare earth doped germanium dioxide that provides source/drain isolation between rare earth metal silicide ohmic contacts is provided.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jingyun Zhang, Takashi Ando, Choonghyun Lee, Alexander Reznicek, Pouya Hashemi
  • Publication number: 20200035563
    Abstract: A method of forming a nanosheet device is provided. The method includes forming a plurality of narrow nanosheets on a first region of a substrate, and forming a plurality of wide nanosheets on a second region of the substrate. The method further includes forming an interfacial layer on the plurality of narrow nanosheets and the plurality of wide nanosheets. The method further includes depositing a gate dielectric layer on the plurality of narrow nanosheets and the plurality of wide nanosheets. The method further includes depositing a dummy gate layer on the gate dielectric layer on the plurality of narrow nanosheets and the plurality of wide nanosheets. The method further includes forming a dummy cover layer on the dummy gate layer on the plurality of narrow nanosheets and the plurality of wide nanosheets.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 30, 2020
    Inventors: Jingyun Zhang, Takashi Ando, Choonghyun Lee
  • Publication number: 20200035820
    Abstract: A strained relaxed silicon germanium alloy buffer layer is employed in the present application to induce a tensile stain on each suspended semiconductor channel material nanosheet within a nanosheet material stack that is present in a long channel device region of a semiconductor substrate. The induced tensile strain keeps the suspended semiconductor channel material nanosheets that are present in long channel device region essentially straight in a lateral direction. Hence, reducing and even eliminating the sagging effect that can be caused by surface tension.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 30, 2020
    Inventors: Jingyun Zhang, Takashi Ando, Choonghyun Lee, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10546925
    Abstract: A semiconductor structure is provided that includes a pFET device including a first functional gate structure containing at least a p-type work function metal and present on physically exposed surfaces, and between, each Si channel material nanosheet of a first set of vertically stacked and suspended Si channel material nanosheets. The structure further includes an nFET device stacked vertically above the pFET device. The nFET device includes a second functional gate structure containing at least an n-type work function metal present on physically exposed surfaces, and between, each Si channel material nanosheet of a second set of vertically stacked and suspended Si channel material nanosheets.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: January 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi
  • Publication number: 20200027984
    Abstract: A method of forming a semiconductor structure includes forming at least one fin disposed over a substrate, wherein sidewalls of the at least one fin includes a first portion proximate a top surface of the substrate having a tapered profile and a second portion disposed above the first portion. The method also includes forming a bottom source/drain region surrounding at least part of the first portion of the sidewalls of the at least one fin having the tapered profile and forming a bottom spacer disposed over a top surface of the bottom source/drain region surrounding at least part of the second portion of the sidewalls of the at least one fin. The at least one fin provides a channel for a vertical field-effect transistor.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 23, 2020
    Inventors: Chun Wing Yeung, ChoongHyun Lee, Jingyun Zhang, Robin Hsin Kuo Chao, Heng Wu
  • Patent number: 10541239
    Abstract: A semiconductor device includes a first SiGe fin formed on a substrate and including a first amount of Ge, and a second SiGe fin formed on a substrate and including a central portion including a second amount of Ge, and a surface portion comprising a third amount of Ge which is greater than the second amount.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: January 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robin Hsin-Ku Chao, Hemanth Jagannathan, ChoongHyun Lee, Chun Wing Yeung, Jingyun Zhang
  • Publication number: 20200020768
    Abstract: A semiconductor structure having electrostatic control and a low threshold voltage is provided. The structure includes an nFET containing vertically stacked and suspended Si channel material nanosheets stacked vertically above a pFET containing vertically stacked and suspended SiGe channel material nanosheets. The vertically stacked nFET and pFET include a single work function metal.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Choonghyun Lee, Jingyun Zhang, Pouya Hashemi, Takashi Ando, Alexander Reznicek
  • Publication number: 20200020690
    Abstract: Embodiments of the invention are directed to a method of fabricating a semiconductor device. A non-limiting example of the method including performing first fabrication operations to form nanosheet field effect transistor (FET) devices in a first region of a substrate. The first fabrication operations include forming a first channel nanosheet, forming a second channel nanosheet over the first channel nanosheet, forming a first gate structure around the first channel nanosheet, and forming a second gate structure around the second channel nanosheet, wherein an air gap is between the first gate structure and the second gate structure. A dopant is applied to the first gate structure and the second gate structure, wherein the dopant is configured to enter the air gap and penetrate into the first gate structure and the second gate structure from within the air gap.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20200013900
    Abstract: A method of forming a source/drain contact is provided. The method includes forming a sacrificial layer on a source/drain, and depositing an oxidation layer on the sacrificial layer. The method further includes heat treating the oxidation layer and the sacrificial layer to form a modified sacrificial layer. The method further includes forming a protective liner on the modified sacrificial layer, and depositing an interlayer dielectric layer on the protective liner. The method further includes forming a trench in the interlayer dielectric layer that exposes a portion of the protective liner.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 9, 2020
    Inventors: Adra Carr, Jingyun Zhang, Choonghyun Lee, Takashi Ando, Pouya Hashemi
  • Patent number: 10529716
    Abstract: A method is presented for triggering asymmetric threshold voltage along a channel of a vertical transport field effect transistor (VTFET). The method includes constructing a first set fins from a first material, constructing a second set of fins from a second material, forming a source region between the first set of fins, and forming a drain region between the second set of fins, the source region composed of a different material than the drain region. The method further includes depositing a first high-k metal gate over the first set of fins and depositing a second high-k metal gate over the second set of fins, the second high-k metal gate being different than the first high-k metal gate such that the asymmetric threshold voltage is present along the channel of the VTFET in a region defined at the bottom of the first and second set of fins.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Choonghyun Lee, Jingyun Zhang, Takashi Ando, Alexander Reznicek, Pouya Hashemi
  • Patent number: 10529850
    Abstract: A method of forming a semiconductor structure includes forming at least one fin disposed over a substrate, wherein sidewalls of the at least one fin includes a first portion proximate a top surface of the substrate having a tapered profile and a second portion disposed above the first portion. The method also includes forming a bottom source/drain region surrounding at least part of the first portion of the sidewalls of the at least one fin having the tapered profile and forming a bottom spacer disposed over a top surface of the bottom source/drain region surrounding at least part of the second portion of the sidewalls of the at least one fin. The at least one fin provides a channel for a vertical field-effect transistor.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chun Wing Yeung, ChoongHyun Lee, Jingyun Zhang, Robin Hsin Kuo Chao, Heng Wu
  • Publication number: 20200006569
    Abstract: A thin layer of lattice matched wide bandgap semiconductor material having semi-insulating properties is employed as an isolation layer between the substrate and a vertical stack of suspended semiconductor channel material nanosheets. The presence of such an isolation layer eliminates the parasitic leakage path between the source region and the drain region that typically occurs through the substrate, while not interfering with the CMOS device that is formed around the semiconductor channel material nanosheets.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Inventors: Alexander Reznicek, Xin Miao, Jingyun Zhang, Choonghyun Lee
  • Publication number: 20200006479
    Abstract: A semiconductor structure is provided that includes a pFET device including a first functional gate structure containing at least a p-type work function metal and present on physically exposed surfaces, and between, each Si channel material nanosheet of a first set of vertically stacked and suspended Si channel material nanosheets. The structure further includes an nFET device stacked vertically above the pFET device. The nFET device includes a second functional gate structure containing at least an n-type work function metal present on physically exposed surfaces, and between, each Si channel material nanosheet of a second set of vertically stacked and suspended Si channel material nanosheets.
    Type: Application
    Filed: September 9, 2019
    Publication date: January 2, 2020
    Inventors: Alexander Reznicek, Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi
  • Patent number: 10522419
    Abstract: A semiconductor device includes a plurality of stacked gate regions spaced apart from each other on a substrate, a plurality of first epitaxial source/drain regions between the plurality of stacked gate regions, wherein the first epitaxial source/drain regions extend from sides of the plurality of stacked gate regions in a first doped region, a plurality of second epitaxial source/drain regions between the plurality of stacked gate regions and positioned over the first epitaxial source/drain regions, wherein the second epitaxial source/drain regions extend from sides of the plurality of stacked gate regions in a second doped region, and a contact region extending through a second epitaxial source/drain region of the plurality of second epitaxial source/drain regions to a first epitaxial source/drain region of the plurality of first epitaxial source/drain regions.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: December 31, 2019
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Publication number: 20190393306
    Abstract: A semiconductor structure containing a gate-all-around nanosheet field effect transistor having a self-limited inner spacer composed of a rare earth doped germanium dioxide that provides source/drain isolation between rare earth metal silicide ohmic contacts is provided.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 26, 2019
    Inventors: Jingyun Zhang, Takashi Ando, Choonghyun Lee, Alexander Reznicek, Pouya Hashemi
  • Publication number: 20190393307
    Abstract: A semiconductor structure is provided that includes a pFET device including a first functional gate structure containing at least a p-type work function metal and present on physically exposed surfaces, and between, each Si channel material nanosheet of a first set of vertically stacked and suspended Si channel material nanosheets. The structure further includes an nFET device stacked vertically above the pFET device. The nFET device includes a second functional gate structure containing at least an n-type work function metal present on physically exposed surfaces, and between, each Si channel material nanosheet of a second set of vertically stacked and suspended Si channel material nanosheets.
    Type: Application
    Filed: September 9, 2019
    Publication date: December 26, 2019
    Inventors: Alexander Reznicek, Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi