Patents by Inventor Johannes Classen

Johannes Classen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9097736
    Abstract: A micromechanical component includes: a substrate; a seismic weight joined to the substrate at a first suspension mount; at least one first electrode for measuring a motion of the seismic weight in a first direction, the first electrode being joined to the substrate at a second suspension mount; and at least one second electrode for measuring a motion of the seismic weight in a second direction different from the first direction, the second electrode being joined to the substrate at a third suspension mount. The first electrode is mechanically connected to the second suspension mount with the aid of a support arm and set apart from the second suspension mount.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: August 4, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Arnd Kaelberer, Lars Tebje
  • Publication number: 20150198493
    Abstract: A micromechanical pressure sensor device includes: an MEMS wafer having a front side and a rear side; a first micromechanical functional layer formed above the front side of the MEMS wafer; and a second micromechanical functional layer formed above the first micromechanical functional layer. A deflectable first pressure detection electrode is formed in one of the first and second micromechanical functional layers. A fixed second pressure detection electrode is formed spaced apart from and opposite the deflectable first pressure detection electrode. An elastically deflectable diaphragm area is formed above the front side of the MEMS wafer. An external pressure is applied to the diaphragm area via an access opening in the MEMS wafer, and the wafer is connected to the deflectable first pressure detection electrode via a plug-like joining area.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 16, 2015
    Inventors: Arnd KAELBERER, Jochen Reinmuth, Johannes Classen
  • Patent number: 9081027
    Abstract: A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, where the movable substructures are excitable into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, where deflections of the Coriolis elements induced by a Coriolis force are detectable, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: July 14, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Ohms, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Daniel Christoph Meisel, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr
  • Patent number: 9067778
    Abstract: A manufacturing method for hybrid integrated components having a very high degree of miniaturization is provided, which hybrid integrated components each have at least two MEMS elements each having at least one assigned ASIC element. Two MEMS/ASIC wafer stacks are initially created independently of one another in that two ASIC substrates are processed independently of one another; a semiconductor substrate is mounted on the processed surface of each of the two ASIC substrates, and a micromechanical structure is subsequently created in each of the two semiconductor substrates. The two MEMS/ASIC wafer stacks are mounted on top of each other, MEMS on MEMS. Only subsequently are the components separated.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: June 30, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Heribert Weber
  • Patent number: 9040336
    Abstract: A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 26, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner
  • Publication number: 20150123219
    Abstract: An electrode system for a micromechanical component, including: at least one first functional layer including electrodes formed therein, at least one second functional layer, and at least one third functional layer, the third functional layer being usable as an electrical printed conductor, the third functional layer being at least sectionally completely free of oxide material.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventor: Johannes CLASSEN
  • Publication number: 20150121990
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Application
    Filed: November 13, 2014
    Publication date: May 7, 2015
    Inventors: Wolfram BAUER, Johannes CLASSEN, Rainer WILLIG, Matthias MEIER, Burkhard KUHLMANN, Mathias REIMANN, Ermin ESCH, Hans-Dieter SCHWARZ, Michael VEITH, Christoph LANG, Udo-Martin GOMEZ
  • Publication number: 20150122023
    Abstract: A micromechanical sensor device, having a first unhoused sensor unit, and at least one second unhoused sensor unit, the sensor units being functionally connected to one another, the sensor units being essentially vertically configured one over the other so that a sensor unit having a larger footprint completely covers a sensor unit having a smaller footprint.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Jens FREY, Arnd KAELBERER, Jochen REINMUTH, Johannes CLASSEN
  • Patent number: 8955379
    Abstract: A yaw rate sensor includes a drive device, at least one mass element which is connected to the drive device, and at least one detection electrode for detecting a motion of the mass element. The mass element has a base layer and at least one web which is situated on the base layer. Also, a method for manufacturing a mass element.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: February 17, 2015
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8956544
    Abstract: A method for manufacturing a micromechanical structure, and a micromechanical structure. The micromechanical structure encompasses a first micromechanical functional layer, made of a first material, that comprises a buried conduit having a first end and a second end; a micromechanical sensor structure having a cap in a second micromechanical functional layer that is disposed above the first micromechanical functional layer; an edge region in the second micromechanical functional layer, such that the edge region surrounds the sensor structure and defines an inner side containing the sensor structure and an outer side facing away from the sensor structure; such that the first end is located on the outer side and the second end on the inner side.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: February 17, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Jochen Reinmuth, Sebastian Guenther, Pia Bustian-Todorov
  • Patent number: 8952466
    Abstract: A micromechanical acceleration sensor includes a seismic mass and a substrate that has a reference electrode. The seismic mass is deflectable in a direction perpendicular to the reference electrode, and the seismic mass has a flexible stop in the deflection direction. The flexible stop of the seismic mass includes an elastic layer.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: February 10, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Jochen Reinmuth, Guenther-Nino-Carlo Ullrich
  • Publication number: 20150008542
    Abstract: A micromechanical component includes a substrate having a cavern structured into the same, an at least partially conductive diaphragm, which at least partially spans the cavern, and a counter electrode, which is situated on an outer side of the diaphragm oriented away from the substrate so that a clearance is present between the counter electrode and the at least partially conductive diaphragm, the at least partially conductive diaphragm being spanned onto or over at least one electrically insulating material which at least partially covers the functional top side of the substrate, and at least one pressure access being formed on the cavern so that the at least partially conductive diaphragm is bendable into the clearance when a gaseous medium flows from an outer surroundings of the micromechanical component into the cavern. Also described is a manufacturing method for a micromechanical component.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Arnd KAELBERER, Jochen Reinmuth, Johannes Classen
  • Patent number: 8928099
    Abstract: A method for manufacturing a micromechanical component is described in which a trench etching process and a sacrificial layer etching process are carried out to form a mass situated movably on a substrate. The movable mass has electrically isolated and mechanically coupled subsections of a functional layer. A micromechanical component having a mass situated movably on a substrate is also described.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 6, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Jochen Reinmuth, Andreas Scheurle
  • Publication number: 20140373628
    Abstract: A yaw rate sensor includes: a first sensor structure having a first oscillating mass and configured to detect a first yaw rate around a first axis of rotation; a second sensor structure having a second oscillating mass and configured to detect second and third yaw rates around second and third axes of rotation, respectively; and a drive structure coupled to the first and second oscillating masses. The first oscillating mass is drivable into a first drive oscillation along a first oscillation direction, and the second oscillating mass is drivable into a second drive oscillation along a second oscillation direction different from the first oscillation direction. The first axis of rotation is perpendicular to the first oscillation direction, and the second and third axes of rotation are perpendicular to the second oscillation direction.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Thorsten BALSLINK, Hendrik SPECHT, Johannes CLASSEN
  • Patent number: 8915137
    Abstract: A yaw rate sensor having a substrate which has a main plane of extension, and a Coriolis element is proposed. The Coriolis element is excitable to a vibration along a third direction which is perpendicular to the main plane of extension. A Coriolis deflection of the Coriolis element along a first direction which is parallel to the main plane of extension may be detected using a detection arrangement. The detection arrangement includes a Coriolis electrode which is connected to the Coriolis element, and a corresponding counterelectrode. Both the Coriolis electrode and the counterelectrode may be excited to a vibration along the third direction.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: December 23, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Torsten Ohms, Daniel Christoph Meisel, Joerg Hauer
  • Patent number: 8910518
    Abstract: A yaw rate sensor (10) includes a movable mass structure (12) and a drive component (13) which is suitable for setting the movable mass structure (12) in motion (14), and an analysis component (15) which is suitable for detecting a response (40) of the movable mass structure (12) to a yaw rate (?). A method for functional testing of a yaw rate sensor (10) includes the following steps: driving a movable mass structure (12), feeding a test signal (42) into a quadrature control loop (44) at a feed point (48) of the quadrature control loop (44), feeding back a deflection (40) of the movable mass structure (12), detecting a measure of the feedback of the movable mass structure (12), and reading out the response signal (47) from the quadrature control loop (44).
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Wolfram Bauer, Johannes Classen, Rainer Willig, Matthias Meier, Burkhard Kuhlmann, Mathias Reimann, Ermin Esch, Hans-Dieter Schwarz, Michael Veith, Christoph Lang, Udo-Martin Gomez
  • Patent number: 8901679
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Publication number: 20140338450
    Abstract: An acceleration sensor having a substrate and a seismic mass; the acceleration sensor has a main extension plane and includes a spring device, via which the substrate and the seismic mass are connected, such that in an acceleration in a detection direction that runs perpendicular to the main extension plane, the seismic mass is deflectable in the sense of a tilting motion about an axis of rotation running parallel to the main extension plane, the seismic mass furthermore being connected to the substrate via at least one first spring, the stiffness of the first spring in a deflection of the seismic mass in the sense of the tilting motion being lower in the detection direction than the stiffness of the first spring in a deflection in a primary direction extending parallel to the main extension plane.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Publication number: 20140339654
    Abstract: A micropatterned component, for measuring accelerations and/or yaw rates, including a substrate having a principal plane of extension of the substrate, an electrode, and a further electrode; the electrode having a principal plane of extension of the electrode, and the further electrode having a principal plane of extension of the further electrode; the principal plane of extension of the electrode being set parallelly to a normal direction perpendicular to the principal plane of extension of the substrate; the principal plane of extension of the further electrode being set parallelly to the normal direction; the electrode having an electrode height extending in the normal direction; the electrode having a flow channel extending completely through the electrode in a direction parallel to the principal plane of extension of the substrate; the flow channel having a channel depth extending parallelly to the normal direction; the channel depth being less than the electrode height.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Publication number: 20140326070
    Abstract: A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Ohms, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Daniel Christoph Meisel, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr