Patents by Inventor Johannes Classen

Johannes Classen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073534
    Abstract: A component is described, in particular an inertial sensor for detecting acceleration forces, including a substrate, a mass structure, and a spring unit, the mass structure being pivotable along an axis in relation to the substrate with the aid of the spring unit, the spring unit including a first spring web and a second spring web, which are spaced apart from one another along a z direction. Furthermore, a method for manufacturing a spring unit is described.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 27, 2021
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 11014807
    Abstract: A method for producing a system, including a first microelectromechanical element and a second microelectromechanical element, including the following: providing, a substrate, having the first microelectromechanical element and the second microelectromechanical element, and a cap element, a getter material being situated on the substrate in a first region in a surrounding environment of the first microelectromechanical element and/or on the cap element in a first corresponding region; situating the cap element on the substrate using a wafer bonding technique so that a sealed first chamber is formed that contains the first microelectromechanical element and the first region and/or the first corresponding region, a sealed second chamber being formed that contains the second microelectromechanical element; producing an opening in the second chamber; and sealing the opening at a first ambient pressure, in particular a first gas pressure.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: May 25, 2021
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 10914937
    Abstract: A pivot apparatus, in particular a pivot apparatus for a micromirror, a fixed base frame being connected, directly or indirectly via an intermediate frame, to a pivotable carrier element. Spring elements having flexural springs are respectively disposed between the base frame and carrier element, base frame and intermediate frame, and intermediate frame and carrier element. The use of flexural springs enables good thermal coupling between the individual components, and an increase in robustness. The pivot apparatus can be embodied in particular as a microelectromechanical system.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: February 9, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Ralf Noltemeyer, Arnd Kaelberer, Peter Sudy, Hans Artmann
  • Patent number: 10900996
    Abstract: A micromechanical sensor, including: a substrate; a movable mass element sensitive in three spatial directions; two x-lateral electrodes for detecting a lateral x-deflection of the movable mass element; two y-lateral electrodes for detecting a lateral y-deflection of the movable mass element; z-electrodes for detecting a z-deflection of the movable mass element; each lateral electrode being fastened on the substrate with the aid of a fastening element; the fastening elements of all electrodes being formed close to a connection element of the movable mass element to the substrate.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 26, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Johannes Classen, Markus Linck-Lescanne
  • Publication number: 20200241035
    Abstract: A micromechanical inertial sensor, having a substrate; and a seismic mass which is connected to the substrate and developed so that it has a detection capability of a low-g acceleration of approximately 1 g in a first Cartesian coordinate direction, and the seismic mass is furthermore developed so that it has a detection capability of a high-g acceleration of at least approximately 100 g in at least one second Cartesian coordinate direction.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 30, 2020
    Inventors: Johannes Classen, Lars Tebje
  • Publication number: 20200200793
    Abstract: A component is described, in particular an inertial sensor for detecting acceleration forces, including a substrate, a mass structure, and a spring unit, the mass structure being pivotable along an axis in relation to the substrate with the aid of the spring unit, the spring unit including a first spring web and a second spring web, which are spaced apart from one another along a z direction. Furthermore, a method for manufacturing a spring unit is described.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 25, 2020
    Inventor: Johannes Classen
  • Publication number: 20200180947
    Abstract: A method for setting a pressure in a cavern formed using a substrate and a substrate cap, the cavern being part of a semiconductor system, including an additional cavern formed with using the substrate and of the substrate cap, a microelectromechanical system being situated in the cavern, an additional microelectromechanical system being situated in the additional cavern, a diffusion area being situated in the substrate and/or in the substrate cap, the method includes a gas diffusing with the aid of the diffusion area from the surroundings into the cavern, during the diffusing, a diffusivity and/or a diffusion flow of the gas from the surroundings into the cavern being greater than an additional diffusivity and/or an additional diffusion flow of the gas from the surroundings into the additional cavern, and/or during the diffusing, the additional cavern being at least essentially protected from a penetration of the gas into the additional cavern.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 11, 2020
    Inventor: Johannes Classen
  • Publication number: 20200156930
    Abstract: A micromechanical component having a movable seismic mass developed in a second and third silicon functional layer, a hollow body being developed in the second and third silicon functional layers, which has a cover element developed in a fourth silicon functional layer.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 21, 2020
    Inventors: Johannes Classen, Laszlo Gogh
  • Patent number: 10656173
    Abstract: A micromechanical structure for an acceleration sensor includes a movable seismic mass including electrodes, the seismic mass being attached to a substrate with the aid of an attachment element; first fixed counter electrodes attached to a first carrier plate; and second fixed counter electrodes attached to a second carrier plate, where the counter electrodes, together with the electrodes, are situated nested in one another in a sensing plane of the micromechanical structure, and where the carrier plates are situated nested in one another in a plane below the sensing plane, each being attached to a central area of the substrate with the aid of an attachment element.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: May 19, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Markus Linck-Lescanne, Sebastian Guenther, Timm Hoehr
  • Patent number: 10607888
    Abstract: A conductive through-plating for a substrate includes a metal component, a first conductive structure situated on or in the environment of a surface of the substrate, and a second conductive structure situated on or in the environment of a further surface of the substrate. A method for producing the through-plating includes, in a first step, at least partially applying above the surface a grid structure that includes a group of openings; in a second step following the first step, carrying out an etching producing a trench in the substrate and at least partially also underneath the group of openings; and, in a fifth step following the second step, carrying out a metallization situating a metal component at least partially in the trench such that the metal component is part of a seal sealing the trench in the area of the surface.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: March 31, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Christoph Schelling, Johannes Classen, Simon Genter
  • Publication number: 20190382263
    Abstract: A method for producing a system, including a first microelectromechanical element and a second microelectromechanical element, including the following: providing, a substrate, having the first microelectromechanical element and the second microelectromechanical element, and a cap element, a getter material being situated on the substrate in a first region in a surrounding environment of the first microelectromechanical element and/or on the cap element in a first corresponding region; situating the cap element on the substrate using a wafer bonding technique so that a sealed first chamber is formed that contains the first microelectromechanical element and the first region and/or the first corresponding region, a sealed second chamber being formed that contains the second microelectromechanical element; producing an opening in the second chamber; and sealing the opening at a first ambient pressure, in particular a first gas pressure.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 19, 2019
    Inventor: Johannes Classen
  • Publication number: 20190371665
    Abstract: A conductive through-plating for a substrate includes a metal component, a first conductive structure situated on or in the environment of a surface of the substrate, and a second conductive structure situated on or in the environment of a further surface of the substrate. A method for producing the through-plating includes, in a first step, at least partially applying above the surface a grid structure that includes a group of openings; in a second step following the first step, carrying out an etching producing a trench in the substrate and at least partially also underneath the group of openings; and, in a fifth step following the second step, carrying out a metallization situating a metal component at least partially in the trench such that the metal component is part of a seal sealing the trench in the area of the surface.
    Type: Application
    Filed: April 6, 2018
    Publication date: December 5, 2019
    Inventors: Christoph Schelling, Johannes Classen, Simon Genter
  • Patent number: 10384932
    Abstract: A method for manufacturing a micromechanical component, including: providing a MEMS wafer and a cap wafer; forming micromechanical structures in the MEMS wafer for at least two sensors; hermetically sealing the MEMS wafer with the cap wafer; forming a first access hole in a first cavity of a first sensor; introducing a defined first pressure into the cavity of the first sensor via the first access hole; closing the first access hole; forming a second access hole in a second cavity of a second sensor; introducing a defined second pressure into the cavity of the second sensor via the second access hole; and closing the second access hole.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 20, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Achim Breitling, Jan-Peter Stadler, Jochen Reinmuth, Johannes Classen
  • Publication number: 20190161347
    Abstract: A method for manufacturing a micromechanical sensor, including the steps: providing a MEMS wafer that includes a MEMS substrate, a defined number of etching trenches being formed in the MEMS substrate in a diaphragm area, the diaphragm area being formed in a first silicon layer that is situated at a defined distance from the MEMS substrate; providing a cap wafer; bonding the MEMS wafer to the cap wafer; and forming a media access point to the diaphragm area by grinding the MEMS substrate.
    Type: Application
    Filed: July 5, 2017
    Publication date: May 30, 2019
    Inventor: Johannes Classen
  • Patent number: 10294095
    Abstract: A micromechanical sensor that is produced surface-micromechanically includes at least one mass element formed in a third functional layer that is non-perforated at least in certain portions. The sensor has a gap underneath the mass element that is formed by removal of a second functional layer and at least one oxide layer. The removal of the at least one oxide layer takes place by introducing a gaseous etching medium into a defined number of etching channels arranged substantially parallel to one another. The etching channels are configured to be connected to a vertical access channel in the third functional layer.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 21, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Benny Pekka Herzogenrath, Johannes Classen
  • Publication number: 20190107553
    Abstract: A micromechanical sensor, including: a substrate; a movable mass element sensitive in three spatial directions; two x-lateral electrodes for detecting a lateral x-deflection of the movable mass element; two y-lateral electrodes for detecting a lateral y-deflection of the movable mass element; z-electrodes for detecting a z-deflection of the movable mass element; each lateral electrode being fastened on the substrate with the aid of a fastening element; the fastening elements of all electrodes being formed close to a connection element of the movable mass element to the substrate.
    Type: Application
    Filed: May 4, 2017
    Publication date: April 11, 2019
    Inventors: Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Johannes Classen, Markus Linck-Lescanne
  • Patent number: 10215772
    Abstract: A micromechanical structure for an acceleration sensor, including a seismic mass that is constituted definedly asymmetrically with reference to the rotational Z axis of the structure of the acceleration sensor, spring elements that are fastened on the seismic mass and on at least one fastening element, a rotational motion of the seismic mass being generatable by way of the spring elements substantially only upon an acceleration in a defined sensing direction within a plane constituted substantially orthogonally to the rotational Z axis.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: February 26, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventor: Johannes Classen
  • Publication number: 20180339900
    Abstract: A method for manufacturing a micromechanical component, including: providing a MEMS wafer and a cap wafer; forming micromechanical structures in the MEMS wafer for at least two sensors; hermetically sealing the MEMS wafer with the cap wafer; forming a first access hole in a first cavity of a first sensor; introducing a defined first pressure into the cavity of the first sensor via the first access hole; closing the first access hole; forming a second access hole in a second cavity of a second sensor; introducing a defined second pressure into the cavity of the second sensor via the second access hole; and closing the second access hole.
    Type: Application
    Filed: October 12, 2016
    Publication date: November 29, 2018
    Inventors: Achim Breitling, Jan-Peter Stadler, Jochen Reinmuth, Johannes Classen
  • Publication number: 20180328959
    Abstract: A micromechanical structure for an acceleration sensor includes a movable seismic mass including electrodes, the seismic mass being attached to a substrate with the aid of an attachment element; first fixed counter electrodes attached to a first carrier plate; and second fixed counter electrodes attached to a second carrier plate, where the counter electrodes, together with the electrodes, are situated nested in one another in a sensing plane of the micromechanical structure, and where the carrier plates are situated nested in one another in a plane below the sensing plane, each being attached to a central area of the substrate with the aid of an attachment element.
    Type: Application
    Filed: November 14, 2016
    Publication date: November 15, 2018
    Inventors: Johannes Classen, Antoine Puygranier, Denis Gugel, Guenther-Nino-Carlo Ullrich, Markus Linck-Lescanne, Sebastian Guenther, Timm Hoehr
  • Patent number: 10031038
    Abstract: A micromechanical pressure sensor device and a corresponding manufacturing method. The micromechanical pressure sensor device includes an ASIC wafer, a rewiring system, formed on the front side, which includes a plurality of strip conductor levels and insulating layers situated in between, a structured insulating layer formed above an uppermost strip conductor level, a micromechanical functional layer formed on the insulating layer and which includes a diaphragm area, which may be acted on by pressure, above a recess in the insulating layer as a first pressure detection electrode, and a second pressure detection electrode on the uppermost strip conductor level, formed in the recess at a distance from the diaphragm area and is electrically insulated from the diaphragm area. The diaphragm area is electrically connected to the uppermost strip conductor level by one or multiple first contact plugs which are led through the diaphragm area and through the insulating layer.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 24, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventor: Johannes Classen