Patents by Inventor Johannes Classen

Johannes Classen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140110800
    Abstract: A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes CLASSEN, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner
  • Patent number: 8695425
    Abstract: A yaw rate sensor includes a substrate having a substrate surface, a first movable element, which is disposed above the substrate surface and has a drive frame and a first detection mass, a first electrode, which is disposed at a distance underneath the first detection mass and connected to the substrate surface, and a second electrode which is disposed at a distance above the first detection mass and connected to the substrate surface. The drive frame is connected to the substrate via at least one drive spring, the detection mass is connected to the drive frame via at least one detection spring, and the first movable element is excitable to a drive oscillation parallel to the substrate surface, and the first detection mass is deflectable perpendicular to the substrate surface.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 15, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8689633
    Abstract: A micromechanical system includes a first movable element, which is connected to a substrate via a first spring element, and a second movable element, which is connected to the substrate via a second spring element. The first movable element and the second movable element are movable in relation to the substrate independent of one another. Furthermore, the first movable element and the second movable element are situated one above the other in at least some sections in a direction perpendicular to the substrate surface.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: April 8, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8683863
    Abstract: In a yaw rate sensor with a substrate having a main extent plane and with a first and second partial structure disposed parallel to the main extent plane, the first partial structure includes a first driving structure and the second partial structure includes a second driving structure, the first and second partial structure being excitable by a driving device, via the first and second driving structure, into oscillation parallel to a first axis parallel to the main extent plane, the first partial structure having a first Coriolis element and the second partial structure having a second Coriolis element, the yaw rate sensor being characterized in that the first and second Coriolis elements are displaceable by a Coriolis force parallel to a second axis, which is perpendicular to the first axis, and parallel to a third axis, which is perpendicular to the first and second axis, the second axis extending parallel to the main extent plane, and the first Coriolis element being connected to the second Coriolis eleme
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Burkhard Kuhlmann, Daniel Christoph Meisel
  • Publication number: 20140021515
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 23, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes Classen, Miko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Publication number: 20130334621
    Abstract: An expansion of the functional scope of a hybrid integrated component including an MEMS element, a cap for the micromechanical structure of the MEMS element, and an ASIC element having circuit components is provided. In this component, the circuit components of the ASIC element interact with the micromechanical structure of the MEMS element. The MEMS element is mounted on the ASIC element in such a way that the micromechanical structure of the MEMS element is situated in a cavity between the cap and the ASIC element. The ASIC element is additionally equipped with the circuit components of a magnetic sensor system. These circuit components are produced in or on the CMOS back-end stack of the ASIC element. The magnetic sensor system may thus be implemented without enlarging the chip area.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 19, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Paul FARBER
  • Publication number: 20130333469
    Abstract: A method for operating and/or measuring a micromechanical device. The device has a first and second seismic mass which are movable by oscillation relative to a substrate; a first drive device for deflecting the first seismic mass and a second drive device for deflecting the second seismic mass, parallel to a drive direction in a first orientation; a third drive device for deflecting the first seismic mass, and a fourth drive device for deflecting the second seismic mass in parallel to the drive direction and according to a second orientation opposite from the first orientation; a first detection device for detecting drive motion of the first seismic mass; and a second detection device for detecting drive motion of the second seismic mass. A first and a second detection signal are generated by the first and second detection devices, the first detection signal being evaluated separately from the second detection signal.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Christoph GAUGER, Patrick WELLNER
  • Patent number: 8596122
    Abstract: A micromechanical component comprising a substrate, a seismic mass, and first and second detection means, the substrate having a main extension plane and the first detection means being provided for detection of a substantially translational first deflection of the seismic mass along a first direction substantially parallel to the main extension plane, and the second detection means further being provided for detection of a substantially rotational second deflection of the seismic mass about a first rotation axis parallel to a second direction substantially perpendicular to the main extension plane. The seismic mass can be embodied as an asymmetrical rocker, with the result that accelerations can be sensed as rotations. Detection can be accomplished via capacitive sensors.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: December 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Lars Tebje
  • Publication number: 20130307096
    Abstract: A hybrid integrated component including an MEMS element and an ASIC element is refined to improve the capacitive signal detection or activation. The MEMS element is implemented in a layered structure on a semiconductor substrate. The layered structure of the MEMS element includes at least one printed conductor level and at least one functional layer, in which the micromechanical structure of the MEMS element having at least one deflectable structural element is implemented. The ASIC element is mounted face down on the layered structure and functions as a cap for the micromechanical structure. The deflectable structural element of the MEMS element is equipped with at least one electrode of a capacitor system. At least one stationary counter electrode of the capacitor system is implemented in the printed conductor level of the MEMS element, and the ASIC element includes at least one further counter electrode of the capacitor system.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 21, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Jens FREY
  • Publication number: 20130299923
    Abstract: A micromechanical acceleration sensor includes a seismic mass and a substrate that has a reference electrode. The seismic mass is deflectable in a direction perpendicular to the reference electrode, and the seismic mass has a flexible stop in the deflection direction. The flexible stop of the seismic mass includes an elastic layer.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Jochen REINMUTH, Guenther-Nino-Carlo ULLRICH
  • Publication number: 20130299928
    Abstract: A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Heribert WEBER, Mirko HATTASS, Daniel Christoph MEISEL
  • Publication number: 20130299925
    Abstract: A micromechanical inertial sensor includes an ASIC element having a processed front side, an MEMS element having a micromechanical sensor structure, and a cap wafer mounted above the micromechanical sensor structure, which sensor structure includes a seismic mass and extends over the entire thickness of the MEMS substrate. The MEMS element is mounted on the processed front side of the ASIC element above a standoff structure and is electrically connected to the ASIC element via through-contacts in the MEMS substrate and in adjacent supports of the standoff structure. A blind hole is formed in the MEMS substrate in the area of the seismic mass, which blind hole is filled with the same electrically conductive material as the through-contacts, the conductive material having a greater density than the MEMS substrate.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Mirko HATTASS, Daniel Christoph MEISEL
  • Patent number: 8573054
    Abstract: A device and manufacturing method for a rotation sensor device includes a holding device, an oscillating mass, and a spring, via which the oscillating mass is connected to the holding device. The spring is designed so that the oscillating mass can be set into an oscillating movement around an oscillation axis with respect to the holding device with the aid of a drive. The steps include: producing a layer sequence having a first layer made of semiconductor material and/or metal and a second layer made of semiconductor material and/or a metal, a boundary surface of the first layer, at least partially being covered by an insulating layer; structuring the spring out of the first layer; and structuring at least one oscillating mass subunit of the oscillating mass, which can be set into the oscillating movement around the oscillation axis with the aid of the drive, out of the second layer.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: November 5, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Publication number: 20130285166
    Abstract: Hybrid integrated components including an MEMS element and an ASIC element are described, whose capacitor system allows both signal detection with comparatively high sensitivity and sensitive activation of the micromechanical structure of the MEMS element. The hybrid integrated component includes an MEMS element having a micromechanical structure which extends over the entire thickness of the MEMS substrate. At least one structural element of this micromechanical structure is deflectable and is operationally linked to at least one capacitor system, which includes at least one movable electrode and at least one stationary electrode. Furthermore, the component includes an ASIC element having at least one electrode of the capacitor system. The MEMS element is mounted on the ASIC element, so that there is a gap between the micromechanical structure and the surface of the ASIC element.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventor: Johannes Classen
  • Publication number: 20130285165
    Abstract: A manufacturing method for hybrid integrated components having a very high degree of miniaturization is provided, which hybrid integrated components each have at least two MEMS elements each having at least one assigned ASIC element. Two MEMS/ASIC wafer stacks are initially created independently of one another in that two ASIC substrates are processed independently of one another; a semiconductor substrate is mounted on the processed surface of each of the two ASIC substrates, and a micromechanical structure is subsequently created in each of the two semiconductor substrates. The two MEMS/ASIC wafer stacks are mounted on top of each other, MEMS on MEMS. Only subsequently are the components separated.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 31, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Heribert WEBER
  • Patent number: 8561465
    Abstract: A rotation rate sensor includes: a mounting device; a first drive frame having a drive, which is designed to set the first drive frame into a first oscillatory motion along an axis of oscillation relative to the mounting device; a first stator electrode; a first actuator electrode coupled to the first drive frame in such a way that in a rotary motion of the rotation rate sensor due to a Coriolis force, the first actuator electrode being displaceable in a first deflection direction relative to the first stator electrode; and an evaluation device configured to determine a voltage applied between the first stator electrode and the first actuator electrode, and to specify information regarding the rotary motion of the rotation rate sensor while taking the determined voltage value into account.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: October 22, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Torsten Ohms, Daniel Christoph Meisel, Joerg Hauer
  • Patent number: 8530982
    Abstract: A micromechanical structure which includes a substrate having a main plane of extension, and a seismic mass which is movable relative to the substrate. The micromechanical structure includes a fixed electrode which is connected to the substrate, and a counterelectrode which is connected to the seismic mass. The fixed electrode has a first fixed electrode region and a second fixed electrode region which is connected in an electrically conductive manner to the first fixed electrode region. The counterelectrode is partially situated between the first and the second fixed electrode region, perpendicular to the main plane of extension.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: September 10, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Christian Bierhoff
  • Publication number: 20130200473
    Abstract: A method for manufacturing a micromechanical component is described in which a trench etching process and a sacrificial layer etching process are carried out to form a mass situated movably on a substrate. The movable mass has electrically isolated and mechanically coupled subsections of a functional layer. A micromechanical component having a mass situated movably on a substrate is also described.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 8, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Johannes CLASSEN, Jochen Reinmuth, Andreas Scheurle
  • Publication number: 20130186200
    Abstract: A micromechanical structure includes: a substrate which has a main plane of extension; and a mass which is movable relative to the substrate, the movable mass being elastically suspended via at least one coupling spring. A first subregion of the movable mass is situated, at least partially, between the substrate and the coupling spring along a vertical direction which is essentially perpendicular to the main plane of extension.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 25, 2013
    Inventor: Johannes CLASSEN
  • Patent number: 8490483
    Abstract: A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 23, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Martin Wrede, Johannes Classen, Torsten Ohms, Carsten Geckeler, Burkhard Kuhlmann, Jens Frey, Daniel Christoph Meisel, Joerg Hauer, Thorsten Balslink