Patents by Inventor Johannes Classen

Johannes Classen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8866238
    Abstract: Hybrid integrated components including an MEMS element and an ASIC element are described, whose capacitor system allows both signal detection with comparatively high sensitivity and sensitive activation of the micromechanical structure of the MEMS element. The hybrid integrated component includes an MEMS element having a micromechanical structure which extends over the entire thickness of the MEMS substrate. At least one structural element of this micromechanical structure is deflectable and is operationally linked to at least one capacitor system, which includes at least one movable electrode and at least one stationary electrode. Furthermore, the component includes an ASIC element having at least one electrode of the capacitor system. The MEMS element is mounted on the ASIC element, so that there is a gap between the micromechanical structure and the surface of the ASIC element.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: October 21, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8850890
    Abstract: An inertial sensor includes a substrate, a mass element, and a detecting device for detecting a movement of the mass element relative to the substrate, the mass element being coupled to the substrate with the aid of a spring device, wherein the spring device has a T-shaped cross-sectional profile. A method for manufacturing an inertial sensor is also disclosed.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 7, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8806940
    Abstract: A micromechanical component for detecting an acceleration. The component includes a conductive layer having a first and a second electrode and a rotatable flywheel mass in the form of a rocker having a first and a second lever arm. The first lever arm is situated opposite the first electrode, and the second lever arm is situated opposite the second electrode. The first lever arm has a first hole structure having a number of first cut-outs, and the second lever arm has a second hole structure having a number of second cut-outs. The first and the second lever arm have different masses. The component is characterized by the fact that the outer dimensions of the first and second lever arms correspond, and the first hole structure of the first lever arm differs from the second hole structure of the second lever arm. Furthermore, a method for manufacturing such a micromechanical component is provided.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: August 19, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8783108
    Abstract: A micromechanical system for detecting an acceleration includes a substrate, a rocker-like mass structure having a first lever arm and a diametrically opposed second lever arm, the lever arms being situated tiltably at a distance to the substrate and about an axis of rotation to the substrate, and first and second electrodes being provided on the substrate. Each electrode is diametrically opposed to a lever arm and each lever arm includes a section extending from the axis of rotation which is located between the electrodes above an intermediate space. The two sections have different masses.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 22, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8759927
    Abstract: A hybrid integrated component including an MEMS element and an ASIC element is refined to improve the capacitive signal detection or activation. The MEMS element is implemented in a layered structure on a semiconductor substrate. The layered structure of the MEMS element includes at least one printed conductor level and at least one functional layer, in which the micromechanical structure of the MEMS element having at least one deflectable structural element is implemented. The ASIC element is mounted face down on the layered structure and functions as a cap for the micromechanical structure. The deflectable structural element of the MEMS element is equipped with at least one electrode of a capacitor system. At least one stationary counter electrode of the capacitor system is implemented in the printed conductor level of the MEMS element, and the ASIC element includes at least one further counter electrode of the capacitor system.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Jens Frey
  • Patent number: 8746066
    Abstract: A micromechanical acceleration sensor is described which includes a substrate and a seismic mass which is movably situated with respect to the substrate in a detection direction. The micromechanical sensor includes at least one damping device for damping motions of the seismic mass perpendicular to the detection direction.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 10, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Sebastian Guenther, Harald Steffes
  • Patent number: 8726731
    Abstract: A micromechanical structure including a substrate having a main plane of extension, and including a first seismic mass, the first seismic mass including a grid structure made of intersecting first mass lines and the first seismic mass being flexibly secured with the aid of first bending-spring elements, and moreover, a first line width of the first mass lines parallel to the main plane of extension being between 20 and 50 percent of a further first line width of the first bending-spring elements parallel to the main plane of extension.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: May 20, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Christoph Gauger
  • Publication number: 20140116134
    Abstract: Micromechanical structure, in particular a yaw rate sensor having a substrate including a main plane of extent for detecting a first yaw rate about a first direction perpendicular to the main plane, a second yaw rate about a second direction parallel to the main plane, and a third yaw rate about a third direction parallel to the main plane and perpendicular to the second direction, includes a rotational oscillating element driven to rotational oscillation about a rotational axis parallel to the first direction. The micromechanical structure includes a yaw rate sensor configuration for detecting the first yaw rate that is completely surrounded by the rotational oscillating element in a plane parallel to the main plane. The micromechanical structure includes at least one first connection of the yaw rate sensor configuration on the rotational oscillating element, and at least one second connection of the yaw rate sensor configuration on the substrate.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Rolf Scheben
  • Publication number: 20140117475
    Abstract: A component has at least one MEMS element and at least one cap made of a semiconductor material. The cap, in addition to its mechanical function as a terminus of a cavity and protection of the micromechanical structure, is provided with an electrical functionality. The micromechanical structure of the MEMS element of the component is situated in a cavity between a carrier and the cap, and includes at least one structural element which is deflectable out of the component plane within the cavity. The cap includes at least one section extending over the entire thickness of the cap, which is electrically insulated from the adjoining semiconductor material in such a way that it may be electrically contacted independently from the remaining sections of the cap.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 1, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes CLASSEN, Axel FRANKE, Jens FREY, Heribert WEBER, Frank FISCHER, Patrick WELLNER, Mirko HATTASS, Daniel Christoph MEISEL
  • Publication number: 20140110800
    Abstract: A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes CLASSEN, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner
  • Patent number: 8695425
    Abstract: A yaw rate sensor includes a substrate having a substrate surface, a first movable element, which is disposed above the substrate surface and has a drive frame and a first detection mass, a first electrode, which is disposed at a distance underneath the first detection mass and connected to the substrate surface, and a second electrode which is disposed at a distance above the first detection mass and connected to the substrate surface. The drive frame is connected to the substrate via at least one drive spring, the detection mass is connected to the drive frame via at least one detection spring, and the first movable element is excitable to a drive oscillation parallel to the substrate surface, and the first detection mass is deflectable perpendicular to the substrate surface.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 15, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8689633
    Abstract: A micromechanical system includes a first movable element, which is connected to a substrate via a first spring element, and a second movable element, which is connected to the substrate via a second spring element. The first movable element and the second movable element are movable in relation to the substrate independent of one another. Furthermore, the first movable element and the second movable element are situated one above the other in at least some sections in a direction perpendicular to the substrate surface.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: April 8, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Classen
  • Patent number: 8683863
    Abstract: In a yaw rate sensor with a substrate having a main extent plane and with a first and second partial structure disposed parallel to the main extent plane, the first partial structure includes a first driving structure and the second partial structure includes a second driving structure, the first and second partial structure being excitable by a driving device, via the first and second driving structure, into oscillation parallel to a first axis parallel to the main extent plane, the first partial structure having a first Coriolis element and the second partial structure having a second Coriolis element, the yaw rate sensor being characterized in that the first and second Coriolis elements are displaceable by a Coriolis force parallel to a second axis, which is perpendicular to the first axis, and parallel to a third axis, which is perpendicular to the first and second axis, the second axis extending parallel to the main extent plane, and the first Coriolis element being connected to the second Coriolis eleme
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Burkhard Kuhlmann, Daniel Christoph Meisel
  • Publication number: 20140021515
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 23, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes Classen, Miko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Publication number: 20130334621
    Abstract: An expansion of the functional scope of a hybrid integrated component including an MEMS element, a cap for the micromechanical structure of the MEMS element, and an ASIC element having circuit components is provided. In this component, the circuit components of the ASIC element interact with the micromechanical structure of the MEMS element. The MEMS element is mounted on the ASIC element in such a way that the micromechanical structure of the MEMS element is situated in a cavity between the cap and the ASIC element. The ASIC element is additionally equipped with the circuit components of a magnetic sensor system. These circuit components are produced in or on the CMOS back-end stack of the ASIC element. The magnetic sensor system may thus be implemented without enlarging the chip area.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 19, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Paul FARBER
  • Publication number: 20130333469
    Abstract: A method for operating and/or measuring a micromechanical device. The device has a first and second seismic mass which are movable by oscillation relative to a substrate; a first drive device for deflecting the first seismic mass and a second drive device for deflecting the second seismic mass, parallel to a drive direction in a first orientation; a third drive device for deflecting the first seismic mass, and a fourth drive device for deflecting the second seismic mass in parallel to the drive direction and according to a second orientation opposite from the first orientation; a first detection device for detecting drive motion of the first seismic mass; and a second detection device for detecting drive motion of the second seismic mass. A first and a second detection signal are generated by the first and second detection devices, the first detection signal being evaluated separately from the second detection signal.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Christoph GAUGER, Patrick WELLNER
  • Patent number: 8596122
    Abstract: A micromechanical component comprising a substrate, a seismic mass, and first and second detection means, the substrate having a main extension plane and the first detection means being provided for detection of a substantially translational first deflection of the seismic mass along a first direction substantially parallel to the main extension plane, and the second detection means further being provided for detection of a substantially rotational second deflection of the seismic mass about a first rotation axis parallel to a second direction substantially perpendicular to the main extension plane. The seismic mass can be embodied as an asymmetrical rocker, with the result that accelerations can be sensed as rotations. Detection can be accomplished via capacitive sensors.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: December 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Lars Tebje
  • Publication number: 20130307096
    Abstract: A hybrid integrated component including an MEMS element and an ASIC element is refined to improve the capacitive signal detection or activation. The MEMS element is implemented in a layered structure on a semiconductor substrate. The layered structure of the MEMS element includes at least one printed conductor level and at least one functional layer, in which the micromechanical structure of the MEMS element having at least one deflectable structural element is implemented. The ASIC element is mounted face down on the layered structure and functions as a cap for the micromechanical structure. The deflectable structural element of the MEMS element is equipped with at least one electrode of a capacitor system. At least one stationary counter electrode of the capacitor system is implemented in the printed conductor level of the MEMS element, and the ASIC element includes at least one further counter electrode of the capacitor system.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 21, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Jens FREY
  • Publication number: 20130299923
    Abstract: A micromechanical acceleration sensor includes a seismic mass and a substrate that has a reference electrode. The seismic mass is deflectable in a direction perpendicular to the reference electrode, and the seismic mass has a flexible stop in the deflection direction. The flexible stop of the seismic mass includes an elastic layer.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Jochen REINMUTH, Guenther-Nino-Carlo ULLRICH
  • Publication number: 20130299928
    Abstract: A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Johannes CLASSEN, Heribert WEBER, Mirko HATTASS, Daniel Christoph MEISEL