Patents by Inventor John C. Arnold

John C. Arnold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8580692
    Abstract: A method for formation of a fin field effect transistor (FinFET) device includes forming a mandrel mask and a large feature (FX) mask on a metal hardmask layer of a film stack, the film stack including a silicon on insulator (SOI) layer located underneath the metal hardmask layer; etching the mandrel mask and the FX mask simultaneously into the metal hardmask layer; and etching the mandrel mask and the FX mask into the SOI layer using the etched metal hardmask layer as a mask.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: November 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Sivananda K. Kanakasabapathy, Stefan Schmitz, Yunpeng Yin
  • Patent number: 8536630
    Abstract: In an embodiment, a method of fabricating a transistor device comprises: providing a semiconductor topography comprising a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers; anisotropically etching exposed regions of the semiconductor substrate on opposite sides of the dielectric spacers to form recessed regions in the substrate; oxidizing exposed surfaces of the substrate in the recessed regions to form an oxide thereon; removing the oxide from bottoms of the recessed regions while retaining the oxide upon sidewalls of the recessed regions; and isotropically etching the substrate such that the recessed regions undercut the pair of dielectric spacers.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Xuefeng Hua, Rangarajan Jagannathan, Stefan Schmitz
  • Patent number: 8536031
    Abstract: A method for fabricating a dual damascene structure includes providing a first photoresist layer coated on an underlying dielectric stack, exposing said first photoresist layer to a first predetermined pattern of light, coating a second photoresist layer onto the pre-exposed first photoresist layer, exposing said second photoresist layer to a second predetermined pattern of light, optionally post-exposure baking the multi-tiered photoresist layers and developing said photoresist layers to form a multi-tiered dual damascene structure in the photoresist layers.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Kuang-Jung Chen, Matthew E. Colburn, Dario L. Goldfarb, Stefan Harrer, Steven J. Holmes, Pushkara Varanasi
  • Publication number: 20130216776
    Abstract: A first metallic hard mask layer over an interconnect-level dielectric layer is patterned with a line pattern. At least one dielectric material layer, a second metallic hard mask layer, a first organic planarization layer (OPL), and a first photoresist are applied above the first metallic hard mask layer. A first via pattern is transferred from the first photoresist layer into the second metallic hard mask layer. A second OPL and a second photoresist are applied and patterned with a second via pattern, which is transferred into the second metallic hard mask layer. A first composite pattern of the first and second via patterns is transferred into the at least one dielectric material layer. A second composite pattern that limits the first composite pattern with the areas of the openings in the first metallic hard mask layer is transferred into the interconnect-level dielectric layer.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John C. Arnold, Sean D. Burns, Steven J. Holmes, David V. Horak, Muthumanickam Sankarapandian, Yunpeng Yin
  • Patent number: 8481423
    Abstract: Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: July 9, 2013
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc.
    Inventors: John C. Arnold, Griselda Bonilla, William J. Cote, Geraud Dubois, Daniel C. Edelstein, Alfred Grill, Elbert Huang, Robert D. Miller, Satya V. Nitta, Sampath Purushothaman, E. Todd Ryan, Muthumanickam Sankarapandian, Terry A. Spooner, Willi Volksen
  • Patent number: 8470706
    Abstract: Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: June 25, 2013
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc.
    Inventors: John C. Arnold, Griselda Bonilla, William J. Cote, Geraud Dubois, Daniel C. Edelstein, Alfred Grill, Elbert Huang, Robert D. Miller, Satya V. Nitta, Sampath Purushothaman, E. Todd Ryan, Muthumanickam Sankarapandian, Terry A. Spooner, Willi Volksen
  • Patent number: 8470711
    Abstract: A method for tone inversion for integrated circuit fabrication includes providing a substrate with an underlayer on top of the substrate; creating a first pattern, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; covering the first pattern with a layer of image reverse material (IRM); and etching the second pattern into the substrate.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Sean D. Burns, Matthew E. Colburn, Steven J. Holmes, Yunpeng Yin
  • Patent number: 8464397
    Abstract: A self-affixing, removable, one-piece handle can be applied and removed from an item, such as a shopping cart, stroller, or the like, or the handle can be applied and removed from any number of items, such as the shoulder straps of a diaper bag or the loop handles of a set of shopping bags, or the like. By being self-affixing, the handle may be attached and removed from the item without the need for tools or any additional items, such as clamps, screws, adhesive, or the like. The handle may provide a link between the shopping cart or stroller and a child. Typical shopping carts or strollers do not provide a suitable location for a child to hold onto while walking alongside. Moreover, a separate, removable, self-affixing handle may be useful to help limit the spread of germs by allowing each child to have their own personal handle.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: June 18, 2013
    Inventors: John C. Arnold, IV, Stephanie Arnold
  • Patent number: 8448103
    Abstract: A methodology for varying the depth of a design feature on a semiconductor wafer. Vias are formed according to design requirements. Nonfunctioning vias may also be placed at a location with respect to a design feature. After vias are formed, the semiconductor wafer is caused to undergo an ashing process followed by the application of an organic planarizing layer. The design features are then formed. If the depth of the design features does not meet design requirements, another semiconductor wafer may be processed to meet design requirements by varying the ashing conditions, choice of organic planarizing layer and/or the nonfunctioning and/or functioning via placement. Design features having various depths on a single semiconductor wafer may be formed with a single lithographic process.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: May 21, 2013
    Assignees: International Business Machines Corporation, Globalfoundries, Inc.
    Inventors: John C. Arnold, Catherine Labelle
  • Patent number: 8383483
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Glenn A. Biery, Alessandro C. Callegari, Tze-Chiang Chen, Michael P. Chudzik, Bruce B. Doris, Michael A. Gribelyuk, Young-Hee Kim, Barry P. Linder, Vijay Narayanan, Joseph S. Newbury, Vamsi K. Paruchuri, Michelle L. Steen
  • Publication number: 20130026639
    Abstract: A method for fabricating a dual damascene structure includes providing a first photoresist layer coated on an underlying dielectric stack, exposing said first photoresist layer to a first predetermined pattern of light, coating a second photoresist layer onto the pre-exposed first photoresist layer, exposing said second photoresist layer to a second predetermined pattern of light, optionally post-exposure baking the multi-tiered photoresist layers and developing said photoresist layers to form a multi-tiered dual damascene structure in the photoresist layers.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: John C. Arnold, Kuang-Jung Chen, Matthew E. Colburn, Dario L. Goldfarb, Stefan Harrar, Steven J. Holmes, Pushkara Varanasi
  • Publication number: 20130001749
    Abstract: A method for formation of a fin field effect transistor (FinFET) device includes forming a mandrel mask and a large feature (FX) mask on a metal hardmask layer of a film stack, the film stack including a silicon on insulator (SOI) layer located underneath the metal hardmask layer; etching the mandrel mask and the FX mask simultaneously into the metal hardmask layer; and etching the mandrel mask and the FX mask into the SOI layer using the etched metal hardmask layer as a mask.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: JOHN C. ARNOLD, Sivananda K. Kanakasabapathy, Stefan Schmitz, Yunpeng Yin
  • Publication number: 20130001750
    Abstract: A method for formation of a fin field effect transistor (FinFET) device includes forming a mandrel mask on a metal hardmask layer of a film stack, the film stack including a silicon on insulator (SOI) layer located underneath the metal hardmask layer; forming a large feature (FX) mask on the metal hardmask layer; etching the mandrel mask and the FX mask simultaneously into the metal hardmask layer; etching the mandrel mask and the FX mask into the SOI layer using the etched metal hardmask layer as a mask.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: International Business Machines corporation
    Inventors: JOHN C. ARNOLD, Sivananda K. Kanakasabapathy, Stefan Schmitz, Yunpeng Yin
  • Publication number: 20120329269
    Abstract: Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.
    Type: Application
    Filed: September 1, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John C. Arnold, Griselda Bonilla, William J. Cote, Geraud Dubois, Daniel C. Edelstein, Alfred Grill, Elbert Huang, Robert D. Miller, Satya V. Nitta, Sampath Purushothaman, E. Todd Ryan, Muthumanickam Sankarapandian, Terry A. Spooner, Willi Volksen
  • Publication number: 20120329272
    Abstract: A method for forming small dimension openings in the organic masking layer of tri-layer lithography. The method includes forming an organic polymer layer over a semiconductor substrate; forming a silicon containing antireflective coating on the organic polymer layer; forming a patterned photoresist layer on the antireflective coating, the patterned photoresist layer having an opening therein; performing a first reactive ion etch to transfer the pattern of the opening into the antireflective coating to form a trench in the antireflective coating, the organic polymer layer exposed in a bottom of the trench; and performing a second reactive ion etch to extend the trench into the organic polymer layer, the second reactive ion etch forming a polymer layer on sidewalls of the trench, the second reactive ion etch containing a species derived from a gaseous hydrocarbon.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John C. Arnold, Jennifer Schuler, Yunpeng Yin
  • Publication number: 20120282779
    Abstract: A cap material layer is deposited on a metal nitride layer. An antireflective coating (ARC) layer, an organic planarizing layer (OPL), and patterned line structures are formed upon the cap material layer. The pattern in the patterned line structures is transferred into the ARC layer and the OPL. Exposed portions of the cap material layer are etched simultaneously with the etch removal of the patterned line structures and the ARC layer. The OPL is employed to etch the metal nitride layer. The patterned cap material layer located over the metal nitride layer protects the top surface of the metal nitride layer, and enables high fidelity reproduction of the pattern in the metal nitride layer without pattern distortion. The metal nitride layer is subsequently employed as an etch mask for pattern transfer into an underlying layer.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John C. Arnold, Sean D. Burns, Matthew E. Colburn, David V. Horak, Yunpeng Yin
  • Patent number: 8298954
    Abstract: A cap material layer is deposited on a metal nitride layer. An antireflective coating (ARC) layer, an organic planarizing layer (OPL), and patterned line structures are formed upon the cap material layer. The pattern in the patterned line structures is transferred into the ARC layer and the OPL. Exposed portions of the cap material layer are etched simultaneously with the etch removal of the patterned line structures and the ARC layer. The OPL is employed to etch the metal nitride layer. The patterned cap material layer located over the metal nitride layer protects the top surface of the metal nitride layer, and enables high fidelity reproduction of the pattern in the metal nitride layer without pattern distortion. The metal nitride layer is subsequently employed as an etch mask for pattern transfer into an underlying layer.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Sean D. Burns, Matthew E. Colburn, David V. Horak, Yunpeng Yin
  • Publication number: 20120244711
    Abstract: An improved method of performing sidewall spacer imager transfer is presented. The method includes forming a set of sidewall spacers next to a plurality of mandrels, the set of sidewall spacers being directly on top of a hard-mask layer; transferring image of at least a portion of the set of sidewall spacers to the hard-mask layer to form a device pattern; and transferring the device pattern from the hard-mask layer to a substrate underneath the hard-mask layer.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: Yunpeng Yin, John C. Arnold, Matthew E. Colburn, Sean D. Burns
  • Publication number: 20120198403
    Abstract: A methodology for varying the depth of a design feature on a semiconductor wafer. Vias are formed according to design requirements. Nonfunctioning vias may also be placed at a location with respect to a design feature. After vias are formed, the semiconductor wafer is caused to undergo an ashing process followed by the application of an organic planarizing layer. The design features are then formed. If the depth of the design features does not meet design requirements, another semiconductor wafer may be processed to meet design requirements by varying the ashing conditions, choice of organic planarizing layer and/or the nonfunctioning and/or functioning via placement. Design features having various depths on a single semiconductor wafer may be formed with a single lithographic process.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John C. Arnold, Catherine Labelle
  • Publication number: 20120126358
    Abstract: A method for tone inversion for integrated circuit fabrication includes providing a substrate with an underlayer on top of the substrate; creating a first pattern, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; covering the first pattern with a layer of image reverse material (IRM); and etching the second pattern into the substrate.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: International Business Machines Corporation
    Inventors: John C. Arnold, Sean D. Burns, Matthew E. Colburn, Steven J. Holmes, Yunpeng Yin