Patents by Inventor John C. Forster

John C. Forster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200395194
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode. The RF hot electrode can include a leg and optional triangular portion near the leg that extends at an angle to the body of the RF hot electrode. A cladding material on one or more of the RF hot electrode and the return electrode can be variably spaced or have variable properties along the length of the plasma gap.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 17, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Kallol Bera, Dmitry A. Dzilno, Anantha K. Subramani, John C. Forster, Tsutomu Tanaka
  • Publication number: 20200312640
    Abstract: Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Inventors: Alan RITCHIE, John C. FORSTER, Muhammad RASHEED
  • Patent number: 10763085
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode. The RF hot electrode can include a leg and optional triangular portion near the leg that extends at an angle to the body of the RF hot electrode. A cladding material on one or more of the RF hot electrode and the return electrode can be variably spaced or have variable properties along the length of the plasma gap.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kallol Bera, Dmitry A. Dzilno, Anantha K. Subramani, John C. Forster, Tsutomu Tanaka
  • Patent number: 10692706
    Abstract: Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 23, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Alan Ritchie, John C. Forster, Muhammad Rasheed
  • Patent number: 10593521
    Abstract: Methods and apparatus for processing substrates are disclosed herein. In some embodiments, a substrate support to support a substrate in a processing chamber includes a dielectric insulator plate; a conductive plate supported on the dielectric insulator plate, the conductive plate comprising a top surface and a bottom surface defining a thickness between the top surface and the bottom surface, wherein an edge portion of the conductive plate tapers in a radially outward direction; and a dielectric plate comprising a substrate support surface disposed upon the top surface of the conductor plate.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 17, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Larry Frazier, Cheng-Hsiung Matthew Tsai, John C. Forster, Mei Po Yeung, Michael S. Jackson
  • Publication number: 20200020509
    Abstract: Embodiments of a gas delivery apparatus for use in a radio frequency (RF) processing apparatus are provided herein. In some embodiments, a gas delivery apparatus for use in a radio frequency (RF) processing apparatus includes: a conductive gas line having a first end and a second end; a first flange coupled to the first end; a second flange coupled to the second end, wherein the conductive gas line extends through and between the first and second flanges; and a block of ferrite material surrounding the conductive gas line between the first and second flanges.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: DAPING YAO, HYMAN W.H. LAM, JOHN C. FORSTER, JIANG LU, CAN XU, DIEN-YEH WU, PAUL F. MA, MEI CHANG
  • Patent number: 10453657
    Abstract: Embodiments of a gas delivery apparatus for use in a radio frequency (RF) processing apparatus are provided herein. In some embodiments, a gas delivery apparatus for use in a radio frequency (RF) processing apparatus includes: a conductive gas line having a first end and a second end; a first flange coupled to the first end; a second flange coupled to the second end, wherein the conductive gas line extends through and between the first and second flanges; and a block of ferrite material surrounding the conductive gas line between the first and second flanges.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: October 22, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Daping Yao, Hyman W. H. Lam, John C. Forster, Jiang Lu, Can Xu, Dien-Yeh Wu, Paul F. Ma, Mei Chang
  • Publication number: 20190196461
    Abstract: A system, apparatus and method for internet-based health and diagnostic monitoring of semiconductor manufacturing components include receiving health and diagnostic information and data from at least one component of a semiconductor manufacturing system, evaluating the received health and diagnostic information and data to determine if at least one of the at least one component of the semiconductor manufacturing system for which the health and diagnostic information and data was received is faulty, and if determined that at least one of the at least one component of the semiconductor manufacturing system is faulty, initiating a corrective action for the faulty component over the internet.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 27, 2019
    Inventors: DINESH SAIGAL, SARIL RAGHU, ALFRED LINKE, AN BAO TRAN, GIL ONTIVEROS, JOHN C. FORSTER, WARREN WOODS
  • Publication number: 20190189400
    Abstract: Apparatus and methods for depositing and treating or etching a film are described. A batch processing chamber includes a plurality of processing regions with at least one plasma processing region. A low frequency bias generator is connected to a susceptor assembly to intermittently apply a low frequency bias to perform a directional treatment or etching the deposited film.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Kenichi Ohno, Keiichi Tanaka, Li-Qun Xia, Tsutomu Tanaka, Dmitry A. Dzilno, Mario D. Silvetti, John C. Forster, Rakesh Ramadas, Mike Murtagh, Alexander V. Garachtchenko
  • Publication number: 20190189404
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode. The RF hot electrode can include a leg and optional triangular portion near the leg that extends at an angle to the body of the RF hot electrode. A cladding material on one or more of the RF hot electrode and the return electrode can be variably spaced or have variable properties along the length of the plasma gap.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Kallol Bera, Dmitry A. Dzilno, Anantha K. Subramani, John C. Forster, Tsutomu Tanaka
  • Publication number: 20180327893
    Abstract: A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 15, 2018
    Inventors: Peijun DING, Rong TAO, Zheng XU, Daniel C. LUBBEN, Suraj RENGARAJAN, Michael A. MILLER, Arvind SUNDARRAJAN, Xianmin TANG, John C. FORSTER, Jianming FU, Roderick C. MOSELY, Fusen CHEN, Praburam GOPALRAJA
  • Publication number: 20180330927
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode.
    Type: Application
    Filed: May 15, 2018
    Publication date: November 15, 2018
    Inventors: Kallol Bera, Anantha K. Subramani, John C. Forster, Philip A. Kraus, Farzad Houshmand, Hanhong Chen
  • Patent number: 10121655
    Abstract: Plasma source assemblies comprising a housing with an RF hot electrode and a return electrode are described. The housing includes a gas inlet and a front face defining a flow path. The RF hot electrode includes a first surface oriented substantially parallel to the flow path. The return electrode includes a first surface oriented substantially parallel to the flow path and spaced from the first surface of the RF hot electrode to form a gap. Processing chambers incorporating the plasma source assemblies and methods of using the plasma source assemblies are also described.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: November 6, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anantha K. Subramani, Kaushal Gangakhedkar, Abhishek Chowdhury, John C. Forster, Nattaworn Nuntaworanuch, Kallol Bera, Philip A. Kraus, Farzad Houshmand
  • Patent number: 10047430
    Abstract: A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 14, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Peijun Ding, Rong Tao, Zheng Xu, Daniel C. Lubben, Suraj Rengarajan, Michael A. Miller, Arvind Sundarrajan, Xianmin Tang, John C. Forster, Jianming Fu, Roderick C. Mosely, Fusen Chen, Praburam Gopalraja
  • Patent number: 9984911
    Abstract: An electrostatic chuck includes a puck having a support surface to support a substrate when disposed thereon and an opposing second surface, wherein one or more chucking electrodes are embedded in the puck, a body having a support surface coupled to the second surface of the puck to support the puck, a DC voltage sensing circuit disposed on support surface of the puck, and an inductor disposed in the body and proximate the support surface of the body, wherein the inductor is electrically coupled to DC voltage sensing circuit, and wherein the inductor is configured to filter high frequency current flow in order to accurately measure DC potential on the substrate.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 29, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ryan Hanson, Manjunatha Koppa, Vijay D. Parkhe, John C. Forster, Keith A. Miller
  • Publication number: 20180130642
    Abstract: Apparatus and methods to control the phase of power sources for plasma process regions in a batch process chamber. A master exciter controls the phase of the power sources during the process sequence based on feedback from the match circuits of the respective plasma sources.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 10, 2018
    Inventors: Tsutomu Tanaka, John C. Forster, Ran Liu, Kenichi Ohno, Ning Li, Mihaela Balseanu, Keiichi Tanaka, Li-Qun Xia
  • Publication number: 20180012732
    Abstract: Embodiments of a gas delivery apparatus for use in a radio frequency (RF) processing apparatus are provided herein. In some embodiments, a gas delivery apparatus for use in a radio frequency (RF) processing apparatus includes: a conductive gas line having a first end and a second end; a first flange coupled to the first end; a second flange coupled to the second end, wherein the conductive gas line extends through and between the first and second flanges; and a block of ferrite material surrounding the conductive gas line between the first and second flanges.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 11, 2018
    Inventors: DAPING YAO, HYMAN W.H. LAM, JOHN C. FORSTER, JIANG LU, CAN XU, DIEN-YEH WU, PAUL F. MA, MEI CHANG
  • Patent number: 9721757
    Abstract: A modular plasma source assembly for use with a processing chamber is described. The assembly includes an RF hot electrode with an end dielectric and a sliding ground connection positioned adjacent the sides of the electrode. A seal foil connects the sliding ground connection to the housing to provide a grounded sliding ground connection separated from the hot electrode by the end dielectric. A coaxial feed line passes through a conduit into the RF hot electrode isolated from the processing environment so that the coaxial RF feed line is at atmospheric pressure while the plasma processing region is at reduced pressure.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: August 1, 2017
    Assignee: Applied Materials, Inc.
    Inventors: John C. Forster, Joseph Yudovsky, Garry K. Kwong, Tai T. Ngo, Kevin Griffin, Kenneth S. Collins, Ren Liu
  • Publication number: 20170213701
    Abstract: Plasma source assemblies comprising a housing with an RF hot electrode having a body and a plurality of source electrodes extending vertically from the RF hot electrode toward the opening in a front face of the housing are described. Processing chambers incorporating the plasma source assemblies and methods of using the plasma source assemblies are also described.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: Anantha K. Subramani, Farzad Houshmand, Philip A. Kraus, Abhishek Chowdhury, John C. Forster, Kallol Bera
  • Patent number: 9666416
    Abstract: A method and apparatus are described for reducing particle contamination in a plasma processing chamber. In one embodiment, a pasting disk is provided which includes a disk-shaped base of high-resistivity material that has an electrically conductive pasting material layer applied to a top surface of the base so that the pasting material layer partially covers the top surface of the base. The pasting disk is sputter etched to deposit conductive pasting material over a wide area on the interior surfaces of a plasma processing chamber while minimizing deposition on dielectric components that are used to optimize the sputter etch process during substrate processing.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: May 30, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: John C. Forster, Anantha Subramani, Wei D. Wang