Patents by Inventor John D. Hyde

John D. Hyde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11853826
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: December 26, 2023
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 11798392
    Abstract: RFID ICs sense and indicate changes in their surrounding environment, such as changes in temperature, humidity, chemical presence, RF signals, and similar. An RFID IC indicates when a significant environmental change has occurred, for example by adjusting the value of a flag, writing data to memory, transmitting a message to an external entity, exiting a sleep state, and/or responding repeatedly to an inventorying reader. In some cases, RFID IC actively notifies an external entity that a significant environmental change has been sensed. For example, RFID IC may alert the external entity by participating in a special inventory process meant for RFID ICs sending environmental change. The RFID IC may alert the external entity by interjecting itself into an inventory round, re-participating in an inventory round, refraining from entering a sleep state after inventorying, and/or adjusting timing of a scheduled reply to communicate with an RFID reader ahead of schedule.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: October 24, 2023
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Harley Heinrich, Matthew Robshaw, Theron Stanford, Charles J. T. Peach, John D. Hyde, Tan Mau Wu
  • Patent number: 11734540
    Abstract: Backflow in rectifiers may be reduced via biasing. Upon determining that backflow within a rectifier is likely, one or more rectifying elements in the rectifier may be debiased, via analog or digital means. The debiased rectifying elements become less conductive or nonconductive, thereby reducing or preventing backflow. The determination of backflow likelihood may be performed based on a signal to be backscattered or the amplitude-modulated envelope of an incident RF wave, and may be digital or analog in nature.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: August 22, 2023
    Assignee: Impinj, Inc.
    Inventors: Amita Patil, Jay A. Kuhn, Charles J. T. Peach, John D. Hyde, Jaskarn Johal
  • Patent number: 11481591
    Abstract: Embodiments are directed to rectifiers using a single bias current or bias current path to bias multiple rectifying elements. A rectifier that has multiple rectifier stages coupled together serially includes a bias current path coupled to each of the rectifier stages. The bias current path is configured to simultaneously bias rectifying elements in each of the rectifier stages by using a bias current to bias a first rectifying element and reusing the bias current to bias other rectifying elements.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 25, 2022
    Assignee: Impinj, Inc.
    Inventors: Charles J. T. Peach, John D. Hyde, Jay A. Kuhn, Theron Stanford, Amita Patil
  • Patent number: 11341837
    Abstract: RFID ICs sense and indicate changes in their surrounding environment, such as changes in temperature, humidity, chemical presence, RF signals, and similar. An RFID IC indicates when a significant environmental change has occurred, for example by adjusting the value of a flag, writing data to memory, transmitting a message to an external entity, exiting a sleep state, and/or responding repeatedly to an inventorying reader. In some cases, RFID IC actively notifies an external entity that a significant environmental change has been sensed. For example, RFID IC may alert the external entity by participating in a special inventory process meant for RFID ICs sending environmental change. The RFID IC may alert the external entity by interjecting itself into an inventory round, re-participating in an inventory round, refraining from entering a sleep state after inventorying, and/or adjusting timing of a scheduled reply to communicate with an RFID reader ahead of schedule.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: May 24, 2022
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Harley Heinrich, Matthew Robshaw, Theron Stanford, Charles J. T. Peach, John D. Hyde, Tan Mau Wu
  • Patent number: 11188803
    Abstract: Backflow in rectifiers may be reduced via biasing. Upon determining that backflow within a rectifier is likely, one or more rectifying elements in the rectifier may be debiased, via analog or digital means. The debiased rectifying elements become less conductive or nonconductive, thereby reducing or preventing backflow. The determination of backflow likelihood may be performed based on a signal to be backscattered or the amplitude-modulated envelope of an incident RF wave, and may be digital or analog in nature.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 30, 2021
    Assignee: Impinj, Inc.
    Inventors: Amita Patil, Jay A. Kuhn, Charles J. T. Peach, John D. Hyde, Jaskarn Johal
  • Patent number: 10929734
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 10885417
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: January 5, 2021
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10878685
    Abstract: RFID ICs sense and indicate changes in their surrounding environment, such as changes in temperature, humidity, chemical presence, RF signals, and similar. An RFID IC indicates when a significant environmental change has occurred, for example by adjusting the value of a flag, writing data to memory, transmitting a message to an external entity, exiting a sleep state, and/or responding repeatedly to an inventorying reader. In some cases, RFID IC actively notifies an external entity that a significant environmental change has been sensed. For example, RFID IC may alert the external entity by participating in a special inventory process meant for RFID ICs sending environmental change. The RFID IC may alert the external entity by interjecting itself into an inventory round, re-participating in an inventory round, refraining from entering a sleep state after inventorying, and/or adjusting timing of a scheduled reply to communicate with an RFID reader ahead of schedule.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: December 29, 2020
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Harley Heinrich, Matthew Robshaw, Theron Stanford, Charles J. T. Peach, John D. Hyde, Tan Mau Wu
  • Patent number: 10819319
    Abstract: A level shifter circuit configured to convert a digital input signal with a first high logic level to a digital output signal having a second high logic level substantially higher than the first high logic level is provided. The level shifter circuit may include a PMOS latch circuit configured to receive the digital input signal and having first and second latch outputs and a current mirror circuit having a mirror input and a mirror output. The mirror input may be at least partly gated by a switch having a control input. The mirror output may be coupled to the first latch output. The control input may be coupled to the first or second latch outputs, and the digital output signal is provided from the first and/or second latch outputs.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: October 27, 2020
    Assignee: Impinj, Inc.
    Inventor: John D. Hyde
  • Patent number: 10713549
    Abstract: Embodiments are directed to rectifiers using a single bias current or bias current path to bias multiple rectifying elements. A rectifier that has multiple rectifier stages coupled together serially includes a bias current path coupled to each of the rectifier stages. Thee bias current path is configured to simultaneously bias rectifying elements in each of the rectifier stages by using a bias current to bias a first rectifying element and reusing the bias current to bias other rectifying elements.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: July 14, 2020
    Assignee: Impinj, Inc.
    Inventors: Charles J. T. Peach, John D. Hyde, Jay A. Kuhn, Theron Stanford, Amita Patil
  • Patent number: 10572789
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: February 25, 2020
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10445535
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: October 15, 2019
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 10002266
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 19, 2018
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 9886658
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 6, 2018
    Assignee: IMPINJ, INC
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 9646186
    Abstract: Impedance matching between an RFID IC and an antenna may be tuned to increase the amount of power that the IC can extract from an RF wave incident on the antenna. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna and/or adjusting a bias of a rectifier in the IC. The tuning circuit may adjust the variable impedance and/or the rectifier bias based on predetermined or stored tuning settings. For example, the tuning circuit may retrieve stored tuning settings from a nonvolatile memory (NVM) configured to operate with limited functionality at low power.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: May 9, 2017
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Harley K. Heinrich, Charles Peach, Christopher J. Diorio, Theron Stanford
  • Patent number: 9503160
    Abstract: A Radio Frequency Identification (RFID) reader configured to perform self-jammer cancellation (SJC) may include an SJC module coupled to a low-noise amplifier (LNA), which in turn may be coupled to a mixer via an LNA-mixer interface. The interface may be implemented with a horizontal matching circuit that includes four inductors magnetically and direct-current (DC) coupled to each other. In some embodiments, the inductors may each be implemented using a different segment of a single inductor.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: November 22, 2016
    Assignee: IMPINJ INC.
    Inventor: John D. Hyde
  • Patent number: 9430683
    Abstract: A self-jammer-cancellation circuit in an RFID system uses passive variable capacitance networks to attenuate phase-adjusted carrier signals, which are then combined with a received signal to reduce unwanted carrier signals in the received signal. The self-jammer-cancellation circuit also adjusts the passive variable capacitance networks such that the overall capacitance of each network remains constant or the overall relationship of capacitances between the networks remains constant.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: August 30, 2016
    Assignee: IMPINJ, INC.
    Inventor: John D Hyde
  • Patent number: 9349090
    Abstract: A tuning circuit in an RFID tag may be used to match antenna and integrated circuit (IC) impedances to maximize the efficiency of IC power extraction from an incident RF wave. The tuning circuit, which requires less power to operate than the IC, adjusts a variable impedance to improve the impedance matching between the IC and the tag antenna and thereby increase the IC power extraction efficiency. The IC may begin operating according to a protocol when it extracts sufficient power from the RF wave or when an optimal impedance matching and power transfer is achieved.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: May 24, 2016
    Assignee: IMPINJ, INC.
    Inventors: Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, John D. Hyde, Christopher J. Diorio
  • Patent number: 9165170
    Abstract: An RFID tag is configured to adjust its current clock frequency to conserve tag power while receiving a reader signal and/or backscattering a signal. The tag may determine whether to adjust its current clock frequency based on one or more timing parameters, which may be determined from a reader command and/or from a signal to be backscattered. The counting rate and/or limit of a tag counter and/or the power supplied to a tag component may also be adjusted. The current tag clock frequency may be adjusted during the signal reception/backscattering process and optionally restored once the process is completed.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: October 20, 2015
    Assignee: Impinj, Inc.
    Inventors: Vadim Gutnik, Scott A. Cooper, John D. Hyde, Theron Stanford