Patents by Inventor John E. Sheets, II

John E. Sheets, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8549363
    Abstract: A processor-implemented method for determining aging of a processing unit in a processor the method comprising: calculating an effective aging profile for the processing unit wherein the effective aging profile quantifies the effects of aging on the processing unit; combining the effective aging profile with process variation data, actual workload data and operating conditions data for the processing unit; and determining aging through an aging sensor of the processing unit using the effective aging profile, the process variation data, the actual workload data, architectural characteristics and redundancy data, and the operating conditions data for the processing unit.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: October 1, 2013
  • Patent number: 8539425
    Abstract: Implementing circuit tuning post design of an integrated circuit utilizing gate phases. Each phase includes a designation of one of a slow phase and a fast phase. During the circuit design phase, each device is given a phase designation based upon expected performance of the device in the circuit. If the device is expected to be in a critical path or has a minimum timing slack, the device is placed on the fast phase. If the device is not in a critical path or has excess timing slack the device is placed on the slow phase.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl L. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8531203
    Abstract: The present invention provides a method and apparatus for measuring alignment, rotation and bias of mask layers in semiconductor manufacturing by examining threshold voltage variation.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Todd A. Christensen, Matthew J. Paschal, John E. Sheets, II
  • Patent number: 8525245
    Abstract: A semiconductor chip has an embedded dynamic random access memory (eDRAM) in an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM deep trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. Retention time and performance of the eDRAM is controlled by applying a voltage to the independently voltage controlled silicon region.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8513815
    Abstract: A method and structures are provided for implementing an integrated circuit with an enhanced wiring structure of mixed double density and high performance wires in a common plane. A wiring structure includes a first wire having a first plane and a first via to a second wire in a second plane having a second via and a third wire having the first plane with height equal to the first wire and the first via, and a third via having a height equal to the second wire and the second via.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Todd A. Christensen, John E. Sheets, II
  • Patent number: 8492207
    Abstract: A method and an eFuse circuit for implementing with enhanced eFuse blow operation without requiring a separate high current and high voltage supply to blow the eFuse, and a design structure on which the subject circuit resides are provided. The eFuse circuit includes an eFuse connected to a field effect transistor (FET) operatively controlled during a sense mode and a blow mode for sensing and blowing the eFuse. The eFuse circuit is placed over an independently voltage controlled silicon region. During a sense mode, the independently voltage controlled silicon region is grounded providing an increased threshold voltage of the FET. During a blow mode, the independently voltage controlled silicon region is charged to a voltage supply potential. The threshold voltage of the FET is reduced by the charged independently voltage controlled silicon region for providing enhanced FET blow function.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8492220
    Abstract: Vertically stacked Field Effect Transistors (FETs) are created on a vertical structure formed on a semiconductor substrate where a first FET and a second FET are controllable independently. A bipolar junction transistor is connected between and in series with the first FET and the second FET, the bipolar junction transistor may be controllable independently of the first and second FET.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Patent number: 8492903
    Abstract: A system comprises a first integrated circuit (IC) chip that includes a first electronic component; a second IC chip that includes a second electronic component; a through silicon via (TSV) in the second IC chip that electrically couples the first electronic component to the second electronic component; and a signal gating transistor that fully occludes the TSV.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gerald K. Bartley, Philip R. Germann, David P. Paulsen, John E. Sheets, II
  • Patent number: 8466024
    Abstract: A semiconductor chip has a gated through silicon via (TSVG). The TSVG may be switched so that the TSVG can be made conducting or non-conducting. The semiconductor chip may be used between a lower level semiconductor chip and a higher semiconductor chip to control whether a voltage supply on the lower level semiconductor chip is connected to or disconnected from a voltage domain in the upper level semiconductor chip. The TSVG comprises an FET controlled by the lower level chip as a switch.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 18, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gerald K. Bartley, Darryl J. Becker, Philip R. Germann, Andrew B. Maki, John E. Sheets, II
  • Publication number: 20130146992
    Abstract: A semiconductor device includes a source extending into a surface of a substrate, a drain extending into the surface of the substrate, and an embedded gate in the substrate extending from the source to the drain.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8456187
    Abstract: A method and circuits for implementing a temporary disable function at indeterminate times of circuitry to be protected in a semiconductor chip, such as in an integrated circuit or a system on a chip (SOC) by modulating threshold voltage shifts of a timing sensitive circuit, and a design structure on which the subject circuit resides are provided. The timing sensitive circuit is designed to be sensitive to threshold-voltage shifts and is placed over an independently voltage controlled silicon region. Upon startup, the independently voltage controlled silicon region is grounded, and then is left floating. Each time a hack attempt or predefined functional oddity is detected, charge is applied onto the independently voltage controlled silicon region. After a defined charge has accumulated, the device threshold voltages in the timing sensitive circuit above the independently voltage controlled silicon region are modulated causing the timing-sensitive circuit to fail.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8435851
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8395186
    Abstract: A method and structures are provided for implementing vertical transistors utilizing wire vias as gate nodes. The vertical transistors are high performance transistors fabricated up in the stack between the planes of the global signal routing wire, for example, used as vertical signal repeater transistors. An existing via or a supplemental vertical via between wire planes provides both an electrical connection and the gate node of the novel vertical transistor.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8384414
    Abstract: A method and circuits for implementing a hacking detection and block function at indeterminate times, and a design structure on which the subject circuit resides are provided. A circuit includes an antenna wrapped around a dynamic bus inside circuitry to be protected. The antenna together with the dynamic bus node is designed so an average bus access activates a field effect transistor (FET) that is connected to a capacitor. The FET drains the capacitor in a specified number of activations by the antenna. The capacitor has a leakage path to a voltage supply rail VDD that charges the capacitor back high after a time, such as ten to one hundred cycles, of the dynamic bus being quiet. The capacitor provides a hacking detect signal for temporarily blocking operation of the circuitry to be protected responsive to determining that the dynamic bus is more active than functionally expected.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20130043544
    Abstract: A semiconductor chip has a FinFET structure with three independently controllable FETs on a single fin. The three FETs are connected in parallel so that current will flow between a common source and a common drain if one or more of the three independently controllable FETs is turned on. The three independently controllable FETs may be used in logic gates.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20130020712
    Abstract: A method and structures are provided for implementing an integrated circuit with an enhanced wiring structure of mixed double density and high performance wires in a common plane. A wiring structure includes a first wire having a first plane and a first via to a second wire in a second plane having a second via and a third wire having the first plane with height equal to the first wire and the first via, and a third via having a height equal to the second wire and the second via.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony G. Aipperspach, Todd A. Christensen, John E. Sheets, II
  • Publication number: 20130001676
    Abstract: A system comprises a first integrated circuit (IC) chip that includes a first electronic component; a second IC chip that includes a second electronic component; a through silicon via (TSV) in the second IC chip that electrically couples the first electronic component to the second electronic component; and a signal gating transistor that fully occludes the TSV.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: GERALD K. BARTLEY, PHILIP R. GERMANN, DAVID P. PAULSEN, JOHN E. SHEETS, II
  • Publication number: 20120268160
    Abstract: A method and circuits for implementing a temporary disable function at indeterminate times of circuitry to be protected in a semiconductor chip, such as in an integrated circuit or a system on a chip (SOC) by modulating threshold voltage shifts of a timing sensitive circuit, and a design structure on which the subject circuit resides are provided. The timing sensitive circuit is designed to be sensitive to threshold-voltage shifts and is placed over an independently voltage controlled silicon region. Upon startup, the independently voltage controlled silicon region is grounded, and then is left floating. Each time a hack attempt or predefined functional oddity is detected, charge is applied onto the independently voltage controlled silicon region. After a defined charge has accumulated, the device threshold voltages in the timing sensitive circuit above the independently voltage controlled silicon region are modulated causing the timing-sensitive circuit to fail.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120267752
    Abstract: A semiconductor chip has an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. A bottom, or floor, of the independently voltage controlled silicon region is a deep implant of opposite doping to a doping of a substrate of the independently voltage controlled silicon region. A top, or ceiling, of the independently voltage controlled silicon region is a buried oxide implant in the substrate. Sides of the independently voltage controlled silicon region are deep trench isolation. Voltage of the independently voltage controlled silicon region is applied through a contact structure formed through the buried oxide.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120267697
    Abstract: A semiconductor chip has an embedded dynamic random access memory (eDRAM) in an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM deep trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. Retention time and performance of the eDRAM is controlled by applying a voltage to the independently voltage controlled silicon region.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams