Patents by Inventor John P. Thompson

John P. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520938
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 31, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10520953
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to access power level data corresponding to each of the multiple UAVs, and select a second UAV of the multiple UAVs based at least in part on a power level of the second UAV relative to a threshold power level corresponding to a first task to be performed and a predicted power usage by the second UAV while utilizing a first tool system temporarily cooperated with the second UAV in performing the first task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 31, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10514691
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10507918
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: December 17, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10507917
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned aerial vehicle (UAV) control. A system for UAV control comprises a flight control system of a UAV, an image sensor on the UAV, an aircraft marshaling signal database, and a control circuit coupled to the flight control system, the image sensor, and the aircraft marshaling signal database. The control circuit being configured to: detect, with the image sensor, a gesture from a ground crew member, verify that the ground crew member is an authorized controller of the UAV, compare the gesture with marshaling signals in the aircraft marshaling signal database to determine a corresponding marshaling signal, determine a flight command based on the corresponding marshaling signal, and execute the flight command with the flight control system of the UAV.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: December 17, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert C. Taylor, Donald R. High, John P. Thompson
  • Patent number: 10486831
    Abstract: An airborne drone training track includes both a ground track and a ceiling track. The ceiling track can be disposed above and be at least essentially aligned with the ground track. Airborne drone attachment tethers movably attach an airborne drone to each of these tracks. A lower airborne drone attachment tether movably attaches to the ground track and to a bottom portion of the airborne drone. A plurality of upper airborne drone attachment tethers movably attach to the ceiling track and to upper portions of the airborne drone. By one approach there is only one lower airborne drone attachment tether and four upper airborne drone attachment tethers.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: November 26, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, Chandrashekar Natarajan, John P. Thompson, Michael D. Atchley
  • Patent number: 10474983
    Abstract: A control circuit dispatches towards a delivery zone a terrestrial vehicle that carries at least one airborne drone and at least one item to be delivered to a customer. When the terrestrial vehicle is in the delivery zone, the drone is dispatched to carry the item to the customer. By one approach the drone exits the terrestrial vehicle without bearing the item. The item can be automatically moved from within the terrestrial vehicle to a position such that the item is at least partially exposed external to the terrestrial vehicle. The airborne drone, subsequent to exiting the terrestrial vehicle, can engage the item in order to then deliver that item to the customer. By one approach the terrestrial vehicle includes one or more platforms that support one or more airborne drones and that can be moved from within the terrestrial vehicle to a deployed position external to the terrestrial vehicle.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: November 12, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, John P. Thompson, Michael D. Atchley, Chandrashekar Natarajan
  • Patent number: 10472051
    Abstract: Systems, apparatuses, and methods are provided herein for stabilizing an unmanned aerial system. An apparatus for stabilizing an unmanned aerial system comprises a ring member and a pair of attachment members each having a first end and a second end, the first end being configured to attach to a multicopter and a second end being coupled to the ring member. Wherein the pair of attachment members holds the ring member such that a plane of a circumference of the ring member is generally parallel to blades of the multicopter.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 12, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, Michael D. Atchley, John P. Thompson, Chandrashekar Natarajan
  • Patent number: 10467376
    Abstract: Some embodiments provide a system to design an unmanned aircraft system (UAS) based on an intended task, comprising: UAS component database and a design control circuit configured to: obtain a first set of multiple task parameters corresponding to a requested task that the UAS is being designed to perform; identify at least one primary type of UAS component to be included in the UAS being designed; identify a first set of one or more secondary types of UAS components to support the primary type of UAS component while implementing the task; and provide a design plan of the designed UAS designed to be utilized to implement the task.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: November 5, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: John P. Thompson, Donald R. High, Nathan G. Jones
  • Patent number: 10457393
    Abstract: Systems, apparatuses, and methods are provided herein for receiving aerial vehicle delivery. An apparatus for receiving aerial vehicle delivery comprises a receiving pad configured to receive a package released by an aerial vehicle; one or more accessory couplers attached to the receiving pad and configured to allow a receiving pad accessory to couple to and uncouple from the receiving pad; and a wall portion surrounding at least a portion of the receiving pad, the wall portion being removably coupled to the receiving pad via an accessory coupler.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 29, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: John P. Thompson, David C. Winkle, Eric A. Letson
  • Publication number: 20190292030
    Abstract: Some embodiments include apparatuses to fulfill customer orders comprising a motorized transport unit; a product pick unit (PPU) that cooperate with the motorized transport unit; a wireless communication network; and a central computer system configured to communicate with the multiple motorized transport units and the plurality of product pick units, and comprises a control circuit and memory storing instructions executed to cause the control circuit to: communicate an instruction to the motorized transport unit and direct the motorized transport unit to transport the product pick unit to a determined first location within the shopping facility proximate to where a first product having been ordered is located; and communicate an instruction to the product pick unit cooperated with the motorized transport unit and direct the product pick unit to retrieve the first product.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Inventors: Donald R. High, Shuvro Chakrobartty, David C. Winkle, Robert C. Taylor, Michael D. Atchley, Karl Kay, Brian G. McHale, John P. Thompson
  • Patent number: 10423169
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190241266
    Abstract: In some embodiments, systems and methods are provided to enable package delivery and interaction with customers. Some embodiments comprise unmanned aircraft system (UAS), comprising: a crane system comprising a first spool system and a crane motor, the first spool system comprises a first cord that is extended and retracted; a retractable interface system cooperated with the first cord; a package holder configured to hold a first package to be delivered by the UAS at a delivery location; a control circuit coupled with the crane motor to control the crane motor, and to activate the crane motor to extend the first cord and lower the retractable interface system while the UAS is maintained in flight at least at a threshold height; wherein the retractable interface system comprises an input interface to receive input from a customer at the delivery location.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 8, 2019
    Inventors: John P. Thompson, Donald R. High, Nathan G. Jones, David C. Winkle, Brian G. McHale
  • Publication number: 20190238624
    Abstract: In some embodiments, systems and methods are provided to capture and distribute imaging content. Some embodiments, provide remote inspection systems, comprising: an unmanned aircraft system (UAS) base station control system that wirelessly communicates with an UAS, and comprises: a wireless transceiver; a control circuit; and a memory wherein the control circuit: receives imaging content, captured by a camera of the UAS; establishes a network connection with a content distribution system and activate a distribution session; and communicates the imaging content to the content distribution system that enables multiple remote authorized rendering systems to access the networked content distribution system over the Internet, join the distribution session, and receive over the Internet in real time the imaging content allowing each of the rendering systems to visually play back the imaging content such that a user at each of the multiple rendering systems can watch the imaging content in real time.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 1, 2019
    Inventors: Donald R. High, John P. Thompson, Timothy M. Fenton, Erik Rye
  • Publication number: 20190236686
    Abstract: In some embodiments, apparatuses and methods are provided herein useful to locating a virtual retail product. In some embodiments, there is provided a system for locating a virtual product at a store including a product interface configured to store product identifiers, receive initial locations at stores of virtual products, update the initial locations, and update the updated initial locations; one or more sensors configured to detect product identifiers; and a control circuit configured to receive the detected product identifiers, receive a product location query, determine a location of a user in the store, update the second updated initial locations, determine one or more locations corresponding to stored product identifiers, determine a first location of a first product; determine a second location of the retail product, determine whether the first location or the second location is closer to the user; and in response, provide the first location to the product interface.
    Type: Application
    Filed: January 18, 2019
    Publication date: August 1, 2019
    Inventors: John P. Thompson, Steven J. Lewis, Brian G. McHale, John J. O'Brien
  • Publication number: 20190227541
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227542
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227554
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10360533
    Abstract: A product display surface supports at least one product being offered for sale thereon. This product display surface has a weight-sensitive RFID tag associated therewith. This tag has at least one transmission element that moves with respect to a remaining portion of the tag as a function of weight being supported by the product display surface. So configured, the weight-sensitive RFID tag transmits at a first level when there are no products (or only a few products) on the product display surface and at a second level when there are at least a predetermined number of products on the product display surface, the first transmission level being less than the second transmission level. An RFID-tag reader reads the weight-sensitive RFID tag and a control circuit determines when the first product display surface lacks sufficient displayed inventory as a function, at least in part, of the weight-sensitive RFID tag's transmission strength.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: July 23, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Michael D. Atchley, John P. Thompson
  • Publication number: 20190210725
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: control the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon