Patents by Inventor Jonathan D. Reid

Jonathan D. Reid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7449098
    Abstract: A disclosed form of mechanically assisted electroplating leads to a flat, thin, overburden. In one example, an accelerator is deposited on a copper surface and mechanically removed in a simplified CMP-like apparatus. The wafer is then plated in an electrolyte containing little or no accelerating additives.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: November 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Jonathan D. Reid, Mark L. Rea, Ismail T. Emesh, Henner W. Meinhold, John S. Drewery
  • Patent number: 7442267
    Abstract: A ruthenium-containing thin film is formed. Typically, the ruthenium-containing thin film has a thickness in a range of about from 1 nm to 20 nm. The ruthenium-containing thin film is annealed in an oxygen-free atmosphere, for example, in N2 forming gas, at a temperature in a range of about from 100° C. to 500° C. for a total time duration of about from 10 seconds to 1000 seconds. Thereafter, copper or other metal is deposited by electroplating or electroless plating onto the annealed ruthenium-containing thin film. In some embodiments, the ruthenium-containing thin film is also treated by UV radiation.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: October 28, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, Seyang Park, Johanes H. Sukamto
  • Patent number: 7341946
    Abstract: Methods are provided for electrochemically depositing copper on a work piece. One method includes the step of depositing overlying the work piece a barrier layer having a surface and subjecting the barrier layer surface to a surface treatment adapted to facilitate deposition of copper on the barrier layer. Copper then is electrochemically deposited overlying the barrier layer.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: March 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Sridhar K. Kailasam, John Drewery, Jonathan D. Reid, Eric G. Webb, Johanes H. Sukamto
  • Patent number: 7232513
    Abstract: An electroplating solution contains a wetting agent in addition to a suppressor and an accelerator. In some embodiments, the solution has a cloud point temperature greater than 35° C. to avoid precipitation of wetting agent or other solute out of the plating solution. In some embodiments, the wetting agent decreases the air-liquid surface tension of the electroplating solution to 60 dyne/cm2 or less to increase the wetting ability of the solution with a substrate surface. In some embodiments of a method for plating metal onto substrate surface, the electroplating solution has a measured contact angle with the substrate surface less than 60 degrees.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 19, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, John H. Sukamto, Yuichi Takada
  • Patent number: 7097410
    Abstract: The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: August 29, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Steven T. Mayer, Seshasayee Varadarajan, David C. Smith, Evan E. Patton, Dinesh S. Kalakkad, Gary Lind, Richard S. Hill
  • Patent number: 7033465
    Abstract: Certain mechanisms of a plating apparatus address problems associated with interaction between plating solutions or other processing solutions and the components of the plating apparatus (such as the electrical contacts). For example, a circumferential spray skirt around the interface of a “cup” and “cone” in the plating apparatus protects these features during plating. A shield mechanism contacts the cup and/or cone at the periphery of their interface to provide a fluid resistant seal. In some cases, the cone includes an outer circumferential lip that engages a complementary surface of the cup for this purpose. Further, a mechanism is provided for raising and lowering the work piece with the cone in order to allow in situ rinsing of the work piece and/or regions of the cup.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: April 25, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Evan E. Patton, Jonathan D. Reid, Jeffrey A. Hawkins, Dinesh S. Kalakkad
  • Patent number: 6890416
    Abstract: An electroplating apparatus prevents anode-mediated degradation of electrolyte additives by creating a mechanism for maintaining separate anolyte and catholyte and preventing mixing thereof within a plating chamber. The separation is accomplished by interposing a porous chemical transport barrier between the anode and cathode. The transport barrier limits the chemical transport (via diffusion and/or convection) of all species but allows migration of ionic species (and hence passage of current) during application of sufficiently large electric fields within electrolyte.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 10, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Evan E. Patton, Robert L. Jackson, Jonathan D. Reid
  • Patent number: 6884335
    Abstract: A negative bias is applied to an integrated circuit wafer immersed in an electrolytic plating solution to generate a DC current. After about ten percent to sixty percent of the final layer thickness has formed in a first plating time, biasing is interrupted during short pauses during a second plating time to generate substantially zero DC current. The pauses are from about 2 milliseconds to 5 seconds long, and typically about 10 milliseconds to 500 milliseconds. Generally, about 2 pauses to 100 pauses are used, and typically about 3 pauses to 15 pauses. Generally, the DC current density during the second plating time is greater than the DC current density during the initial plating time. Typically, the integrated circuit wafer is rotated during electroplating. Preferably, the wafer is rotated at a slower rotation rate during the second plating time than during the first plating time.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: April 26, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, John H. Sukamto, Sesha Varadarajan, Margolita M. Pollack, Bryan L. Buckalew, Tariq Majid
  • Publication number: 20040231996
    Abstract: A negative bias is applied to an integrated circuit wafer immersed in an electrolytic plating solution to generate a DC current. After about ten percent to sixty percent of the final layer thickness has formed in a first plating time, biasing is interrupted during short pauses during a second plating time to generate substantially zero DC current. The pauses are from about 2 milliseconds to 5 seconds long, and typically about 10 milliseconds to 500 milliseconds. Generally, about 2 pauses to 100 pauses are used, and typically about 3 pauses to 15 pauses. Generally, the DC current density during the second plating time is greater than the DC current density during the initial plating time. Typically, the integrated circuit wafer is rotated during electroplating. Preferably, the wafer is rotated at a slower rotation rate during the second plating time than during the first plating time.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 25, 2004
    Applicant: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, John H. Sukamto, Sesha Varadarajan, Margolita M. Pollack, Bryan L. Buckalew, Tariq Majid
  • Patent number: 6821407
    Abstract: An electroplating system includes (a) a phosphorized anode having an average grain size of at least about 50 micrometers and (b) plating apparatus that separates the anode from the cathode and prevents most particles generated at the anode from passing to the cathode. The separation may be accomplished by interposing a microporous chemical transport barrier between the anode and cathode. The relatively few particles that are generated at the large grain phosphorized copper anode are prevented from passing into the cathode (wafer) chamber area and thereby causing a defect in the part.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 23, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Timothy Mark Archer, Thomas Tan Vu, Seshasayee Varadarajan, Jon Henri, Steven T. Mayer, David Sauer, Anita Kang, Gerald Feldewerth
  • Patent number: 6800187
    Abstract: An apparatus for engaging a work piece during plating facilitates electrolyte flow during a plating operation. The apparatus helps to control the plating solution fluid dynamics and electric field shape to keep the wafer's local plating environment uniform and bubble free. The apparatus holding the work piece in a manner that facilitates electrolyte circulation patterns in which the electrolyte flows from the center of the work piece plating surface, outward toward the edge of the edge of the work piece. The apparatus holds the work piece near the work piece edges and provides a flow path for electrolyte to flow outward away from the edges of the work piece plating surface. That flow path has a “snorkel” shape in which the outlet is higher than the inlet. In addition, the flow path may have a slot shape that spans much or all of the circumference of holding apparatus. It may be made from a material that resists deformation and corrosion such as certain ceramics.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: October 5, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Steven T. Mayer, R. Marshall Stowell, Evan E. Patton, Jeff A. Hawkins
  • Patent number: 6793796
    Abstract: Electroplating methods using an electroplating bath containing metal ions and a suppressor additive, an accelerator additive, and a leveler additive, together with controlling the current density applied to a substrate, avoid defects in plated films on substrates having features with a range of aspect ratios, while providing good filling and thickness distribution. The methods include, in succession, applying DC cathodic current densities optimized to form a conformal thin film on a seed layer, to provide bottom-up filling, preferentially on features having the largest aspect ratios, and to provide conformal plating of all features and adjacent field regions. Including a leveling agent in the electroplating bath produces films with better quality after subsequent processing.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: September 21, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, David Smith, Steven T. Mayer, Jon Henri, Sesha Varadarajan
  • Patent number: 6773571
    Abstract: The present invention pertains to methods and apparatus for electroplating a substantially uniform layer of a metal onto a work piece having a seed layer thereon. The total current of a plating cell is distributed among a plurality of anodes in the plating cell in order to tailor the current distribution in the plating electrolyte to compensate for resistance and voltage variation across a work piece due to the seed layer. Focusing elements are used to create “virtual anodes” in proximity to the plating surface of the work piece to further control the current distribution in the electrolyte during plating.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: August 10, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Evan E. Patton, Brian Paul Blackman, Jonathan D. Reid, Thomas Anand Ponnuswamy, Harold D. Perry
  • Patent number: 6755946
    Abstract: The present invention includes apparatus and methods for measuring impedance of a layer of deposited metal on a substrate and controlling deposition uniformity during electroplating. A first circuit delivers plating current to a metal layer on the substrate, and a second circuit, electrically isolated from the first, measures the impedance. Methods of the invention provide multi-point sheet resistance measurements before and during an electroplating process on a substrate. In a specific example, resistance is measured via a copper seed layer during electroplating.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: June 29, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Evan E. Patton, Jonathan D. Reid, Jeffrey A. Hawkins, Dinesh S. Kalakkad, Steven T. Mayer
  • Publication number: 20040065540
    Abstract: A treating head having a treating surface and a substrate treatment surface define a thin fluid gap that is filled with reactant liquid to form a thin liquid layer on the substrate for conducting a liquid chemical reaction treatment or other liquid treatment of the substrate. The thin liquid layer has a volume in a range of about from 50 ml to 500 ml. Preferably, the chemical composition, temperature, and other properties of liquid in the thin liquid layer are dynamically variable.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 8, 2004
    Applicant: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Jonathan D. Reid, Timothy Patrick Cleary, Edmund B. Minshall, R. Marshall Stowell, Heung Lak Park
  • Patent number: 6716334
    Abstract: A plating cell has an inner plating bath container for performing electroplating on a work piece (e.g., a wafer) submerged in a solution contained by the inner plating bath container. A reclaim inlet funnels any solution overflowing the inner plating bath container back into a reservoir container to be circulated back into the inner plating bath container. A waste channel is also provided having an inlet at a different height than the inlet of the reclaim channel. After electroplating, the wafer is lifted to a position and spun. While spinning, the wafer is thoroughly rinse with, for example, ultra pure water. The spin rate and height of the wafer determine whether the water and solution are reclaimed through the reclaim channel or disposed through the waste channel.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: April 6, 2004
    Assignee: Novellus Systems, Inc
    Inventors: Jonathan D. Reid, Steven W. Taatjes, Robert J. Contolini, Evan E. Patton
  • Patent number: 6664122
    Abstract: Disclosed is a procedure for deposition of a thin and relatively continuous electroless copper film on the substrate of sub-micron integrated circuit features. The electroless copper film is deposited onto a previously deposited PVD copper film, which may be discontinuous. The continuous film formed by electroless deposition allows for sufficient filling of the sub-micron integrated circuit features by electrodeposition. The electroless bath employed to form the continuous electroless copper film may be composed of a reducing agent, a complexing agent, a source of copper ions, a pH adjuster, and optionally one or more surfactants and/or stabilizers. In one example, the reducing agent contains an aldehyde moiety.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: December 16, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Tatyana N. Andryuschenko, Jonathan D. Reid, Steven T. Mayer, Eric G. Webb
  • Patent number: 6551487
    Abstract: The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: April 22, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Steven T. Mayer, Seshasayee Varadarajan, David C. Smith, Evan E. Patton, Dinesh S. Kalakkad, Gary Lind
  • Patent number: 6527920
    Abstract: An electroplating apparatus prevents anode-mediated degradation of electrolyte additives by creating a mechanism for maintaining separate anolyte and catholyte and preventing mixing thereof within a plating chamber. The separation is accomplished by interposing a porous chemical transport barrier between the anode and cathode. The transport barrier limits the chemical transport (via diffusion and/or convection) of all species but allows migration of ionic species (and hence passage of current) during application of sufficiently large electric fields within electrolyte.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: March 4, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Evan E. Patton, Robert L. Jackson, Jonathan D. Reid
  • Publication number: 20010015321
    Abstract: Electroplating methods using an electroplating bath containing metal ions and a suppressor additive, an accelerator additive, and a leveler additive, together with controlling the current density applied to a substrate, avoid defects in plated films on substrates having features with a range of aspect ratios, while providing good filling and thickness distribution. The methods include, in succession, applying DC cathodic current densities optimized to form a conformal thin film on a seed layer, to provide bottom-up filling, preferentially on features having the largest aspect ratios, and to provide conformal plating of all features and adjacent field regions. Including a leveling agent in the electroplating bath produces films with better quality after subsequent processing.
    Type: Application
    Filed: February 28, 2001
    Publication date: August 23, 2001
    Inventors: Jonathan D. Reid, David Smith, Steven T. Mayer, Jon Henri, Sesha Varadarajan