Patents by Inventor Jong-I Mou

Jong-I Mou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9158301
    Abstract: An embodiment is a method for semiconductor processing control. The method comprises identifying a key process stage from a plurality of process stages based on a parameter of processed wafers, forecasting a trend for a wafer processed by the key process stage and some of the plurality of process stages based on the parameter, and dispatching the wafer to one of a first plurality of tools in a tuning process stage. The one of the first plurality of tools is determined based on the trend.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sunny Wu, Yen-Di Tsen, Chun-Hsien Lin, Keung Hui, Jo Fei Wang, Jong-I Mou
  • Patent number: 9159597
    Abstract: An apparatus, a system and a method are disclosed. An exemplary apparatus includes a wafer processing chamber. The apparatus further includes radiant heating elements disposed in different zones and operable to heat different portions of a wafer located within the wafer processing chamber. The apparatus further includes sensors disposed outside the wafer processing chamber and operable to monitor energy from the radiant heating elements disposed in the different zones. The apparatus further includes a computer configured to utilize the sensors to characterize the radiant heating elements disposed in the different zones and to provide a calibration for the radiant heating elements disposed in the different zones such that a substantially uniform temperature profile is maintained across a surface of the wafer.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: October 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Tien Chang, Sunny Wu, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Patent number: 9141097
    Abstract: A method of automatically determining process parameters for processing equipment includes processing at least one first substrate in the processing equipment at a first time; and processing at least one second substrate in the processing equipment at a second time. The method includes collecting data on process monitors for the at least one first substrate; and the at least one second substrate. The method includes receiving the data by a multiple-input-multiple-output (MIMO) optimization system. The method includes revising a sensitivity matrix, by a MIMO optimizer, using the data and an adaptive-learning algorithm, wherein the adaptive-learning algorithm revises the sensitivity matrix based on a learning parameter which is related to a rate of change of the processing equipment over time. The method includes determining a set of process parameters for the processing equipment by the MIMO optimizer, wherein the MIMO optimizer uses the revised sensitivity matrix to determine the process parameters.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 22, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou
  • Patent number: 9123583
    Abstract: The present disclosure relates to a method of monitoring wafer topography. A position and orientation of a plurality first alignment shapes disposed on a surface of a wafer are measured. Wafer topography as a function of wafer position is modeled by subjecting the wafer to an alignment which simultaneously minimizes misalignment between the wafer and a patterning apparatus and maximizes a focus of radiation on the surface. A non-correctable error is determined as a difference between the modeled wafer topography and a measured wafer topography. A maximum non-correctable error per field is determined for a wafer, and a mean variation in the maximum non-correctable error across each field within each wafer of a lot is determined, both within a layer and across layers. These values are then verified against a set of statistical process control rules to determine if they are within a specification limit of the manufacturing process.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: September 1, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsien Lin, Kuo-Hung Chao, Yi-Ping Hsieh, Yen-Di Tsen, Jui-Chun Peng, Heng-Hsin Liu, Jong-I Mou
  • Patent number: 9102033
    Abstract: An apparatus and method for providing target thickness and surface profile uniformity control of a multi-head chemical mechanical polishing (CMP) process is disclosed. An exemplary method includes providing at least two wafers; determining a surface profile of each of the at least two wafers; determining an operation mode for a chemical mechanical polishing (CMP) process based on the surface profiles of the at least two wafers; determining a CMP polishing recipe for each of the at least two wafers based on the operation mode; and performing the CMP process on the at least two wafers based on the determined CMP polishing recipes.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 11, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keung Hui, Jin-Ning Sung, Huang Soon Kang, Yen-Di Tsen, Jong-I Mou
  • Publication number: 20150211122
    Abstract: An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
    Type: Application
    Filed: April 7, 2015
    Publication date: July 30, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Lin CHANG, Hsin-Hsien WU, Zin-Chang WEI, Chi-Ming YANG, Chyi Shyuan CHERN, Jun-Lin YEH, Jih-Jse LIN, Jo Fei WANG, Ming-Yu FAN, Jong-I MOU
  • Patent number: 9082661
    Abstract: A method includes performing a semiconductor fabrication process on a plurality of substrates. The plurality of substrates are divided into a first subset and a second subset. A rework process is performed on the second subset of the plurality of substrates but not on the first subset. A respective mean value of at least one exposure parameter for a lithography process is computed for each respective one of the first and second subsets of the plurality of substrates. A scanner overlay correction and a mean correction are applied to expose a second plurality of substrates on which the rework process has been performed. The mean correction is based on the computed mean values.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: July 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Di Tsen, Shin-Rung Lu, Jong-I Mou
  • Publication number: 20150192616
    Abstract: A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 9, 2015
    Inventors: Jui-Long Chen, Chien-Chih Liao, Chin-Hsiang Lin, Hui-yun Chao, Jong-I Mou, Tseng Chin Lo, Ta-Yung Lee
  • Publication number: 20150187662
    Abstract: One or more methods or systems for performing chemical mechanical planarization (CMP) are provided. The system includes at least one of an emitter, a detector, a spectroscopic signal generator, a comparator, a spectral library, a controller or a CMP device. A spectroscopic signal is generated and is used to determine the thickness of a first material formed on or from a wafer by comparing the spectroscopic signal to a spectral library. Responsive to the thickness not being equal to the desired thickness, the controller instructs the CMP device to perform a rotation to reduce the thickness of the first material. The system and method herein increase the sensitivity of the CMP, such that the thickness of the first material is reduced with greater accuracy and precision, as compared to where the thickness is not measured between consecutive rotations of a wafer.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yen-Di Tsen, Cheng Yen-Wei, Jong-I Mou
  • Publication number: 20150170904
    Abstract: A method of processing first and second semiconductor wafers is provided. Each of the first and second semiconductor wafers has a first layer and a second layer over the first layer. A first lithographic process is performed on the first layer over the first semiconductor wafer using a first inter-field correction and a first intra-field correction. An overlay error of the first lithographic process is determined. A second inter-field correction and a second intra-field correction are computed based on the first inter-field correction, the first intra-field correction, and the measured overlay error. A second lithographic process is performed on the second layer over the second semiconductor wafer, based on the second inter-field correction and the second intra-field correction.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 18, 2015
    Inventors: Yen-Di TSEN, Yi-Ping HSIEH, Chen-Yen HUANG, Shin-Rung LU, Jong-I MOU
  • Publication number: 20150162166
    Abstract: A system, a method, and a non-transitory computer readable storage medium for controlling an ion implanter are disclosed herein. The system includes a sample module and a control module. The sample module is configured to generate a summarized value from process data of the ion implanter, and the process data correspond to a control parameter. The control module is configured to tune a control parameter, and the control module performs an ion implantation by releasing tools of the ion implanter in accordance with the control parameter when the summarized value meets a predetermined stability requirement.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 11, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Feng TSAI, Chia-Tong HO, Chia-Hsing LlAO, Sheng-Wei LEE, Jo-Fei WANG, Jong-I MOU
  • Publication number: 20150125970
    Abstract: A system and method of automatically detecting failure patterns for a semiconductor wafer process is provided. The method includes receiving a test data set collected from testing a plurality of semiconductor wafers, forming a respective wafer map for each of the wafers, determining whether each respective wafer map comprises one or more respective objects, selecting the wafer maps that are determined to comprise one or more respective objects, selecting one or more object indices for selecting a respective object in each respective selected wafer map, determining a plurality of object index values in each respective selected wafer map, selecting an object in each respective selected wafer map, determining a respective feature in each of the respective selected wafer, classifying a respective pattern for each of the respective selected wafer maps and using the respective wafer fingerprints to adjust one or more parameters of the semiconductor fabrication process.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 7, 2015
    Inventors: Jui-Long CHEN, Hui-Yun CHAO, Yen-Di TSEN, Jong-I MOU
  • Patent number: 9023664
    Abstract: An apparatus and a method for controlling critical dimension (CD) of a circuit is provided. An apparatus includes a controller for receiving CD measurements at respective locations in a circuit pattern in an etched film on a first substrate and a single wafer chamber for forming a second film of the film material on a second substrate. The single wafer chamber is responsive to a signal from the controller to locally adjust a thickness of the second film based on the measured CD's. A method provides for etching a circuit pattern of a film on a first substrate, measuring CD's of the circuit pattern, adjusting a single wafer chamber to form a second film on a second semiconductor substrate based on the measured CD. The second film thickness is locally adjusted based on the measured CD's.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Lin Chang, Hsin-Hsien Wu, Zin-Chang Wei, Chi-Ming Yang, Chyi-Shyuan Chern, Jun-Lin Yeh, Jih-Jse Lin, Jo-Fei Wang, Ming-Yu Fan, Jong-I Mou
  • Patent number: 9026239
    Abstract: A method of extending advanced process control (APC) models includes constructing an APC model table including APC model parameters of a plurality of products and a plurality of work stations. The APC model table includes empty cells and cells filled with existing APC model parameters. Average APC model parameters of the existing APC model parameters are calculated, and filled into the empty cells as initial values. An iterative calculation is performed to update the empty cells with updated values.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Feng Tsai, Yen-Di Tsen, Jo Fei Wang, Jong-I Mou
  • Patent number: 9000798
    Abstract: A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Long Chen, Chien-Chih Liao, Tseng Chin Lo, Hui-Yun Chao, Ta-Yung Lee, Jong-I Mou, Chin-Hsiang Lin
  • Publication number: 20150081081
    Abstract: Among other things, one or more systems and techniques for retuning a semiconductor fabrication component are provided. The semiconductor fabrication component, such as an advanced process control (APC) component, is configured to evaluate or adjust various fabrication parameters associated with semiconductor fabrication processing. Processing data associated with the semiconductor fabrication component is evaluated to formulate performance indices used to evaluate performance of parameters used by the semiconductor fabrication component. One or more fabrication process change simulations are performed to generate a component operating behavior data structure indicating how different values for the parameters result in improved or degraded performance by the semiconductor fabrication component. In this way, the component operating behavior data structure is evaluated to identify tuning values for the parameters that are used to retune the semiconductor fabrication component.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Keung Hui, Cheng Yen-Wei, Jong-I Mou
  • Publication number: 20150027636
    Abstract: A method includes performing a semiconductor fabrication process on a plurality of substrates. The plurality of substrates are divided into a first subset and a second subset. A rework process is performed on the second subset of the plurality of substrates but not on the first subset. A respective mean value of at least one exposure parameter for a lithography process is computed for each respective one of the first and second subsets of the plurality of substrates. A scanner overlay correction and a mean correction are applied to expose a second plurality of substrates on which the rework process has been performed. The mean correction is based on the computed mean values.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventors: Yen-Di TSEN, Shin-Rung LU, Jong-I MOU
  • Patent number: 8938698
    Abstract: A system and method of automatically detecting failure patterns for a semiconductor wafer process is provided. The method includes receiving a test data set collected from testing a plurality of semiconductor wafers, forming a respective wafer map for each of the wafers, determining whether each respective wafer map comprises one or more respective objects, selecting the wafer maps that are determined to comprise one or more respective objects, selecting one or more object indices for selecting a respective object in each respective selected wafer map, determining a plurality of object index values in each respective selected wafer map, selecting an object in each respective selected wafer map, determining a respective feature in each of the respective selected wafer, classifying a respective pattern for each of the respective selected wafer maps and using the respective wafer fingerprints to adjust one or more parameters of the semiconductor fabrication process.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: January 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Long Chen, Hui-Yun Chao, Yen-Di Tsen, Jong-I Mou
  • Publication number: 20150015870
    Abstract: The present disclosure relates to a method of monitoring wafer topography. A position and orientation of a plurality first alignment shapes disposed on a surface of a wafer are measured. Wafer topography as a function of wafer position is modeled by subjecting the wafer to an alignment which simultaneously minimizes misalignment between the wafer and a patterning apparatus and maximizes a focus of radiation on the surface. A non-correctable error is determined as a difference between the modeled wafer topography and a measured wafer topography. A maximum non-correctable error per field is determined for a wafer, and a mean variation in the maximum non-correctable error across each field within each wafer of a lot is determined, both within a layer and across layers. These values are then verified against a set of statistical process control rules to determine if they are within a specification limit of the manufacturing process.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Chun-Hsien Lin, Kuo-Hung Chao, Yi-Ping Hsieh, Yen-Di Tsen, Jui-Chun Peng, Heng-Hsin Liu, Jong-I Mou
  • Patent number: 8925479
    Abstract: A system and method for controlling a dosage profile is disclosed. An embodiment comprises separating a wafer into components of a grid array and assigning each of the grid components a desired dosage profile based upon a test to compensate for topology differences between different regions of the wafer. The desired dosages are decomposed into directional dosage components and the directional dosage components are translated into scanning velocities of the ion beam for an ion implanter. The velocities may be fed into an ion implanter to control the wafer-to-beam velocities and, thereby, control the implantation.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keung Hui, Chun-Lin Chang, Jong-I Mou