Patents by Inventor Jong-ryeol Yoo

Jong-ryeol Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7842566
    Abstract: A FinFET may include a semiconductor fin having a top surface and a sidewall having different crystal planes. A gate dielectric layer on the top surface and on the sidewall has different thicknesses. A gate electrode is formed on the gate dielectric layer across the top surface and sidewall of the semiconductor fin.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Sun-Ghil Lee, Jong-Ryeol Yoo, Si-Young Choi
  • Publication number: 20100240180
    Abstract: In a method of manufacturing a semiconductor device, a recess is formed in an active region of a substrate. A gate insulation layer is formed in the first recess. A barrier layer is formed on the gate insulation layer. A preliminary nucleation layer having a first resistance is formed on the barrier layer. The preliminary nucleation layer is converted into a nucleation layer having a second resistance substantially smaller than the first resistance. A conductive layer is formed on the nucleation layer. The conductive layer, the nucleation layer, the barrier layer and the gate insulation layer are partially etched to form a buried gate structure including a gate insulation layer pattern, a barrier layer pattern, a nucleation layer pattern and a conductive layer pattern.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Inventors: In-Sang Jeon, Si-Hyung Lee, Jong-Ryeol Yoo, Yu-Gyun Shin, Suk-Hun Choi
  • Publication number: 20100213541
    Abstract: An integrated circuit device includes a semiconductor substrate including an active region defined by an isolation region and having at least one trench therein, a gate insulating layer formed in the at least one trench, a gate electrode layer having a nano-crystalline structure disposed on the gate insulating layer and a word line on the gate electrode layer in the at least one trench. The device may further include a capping layer on the word line.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 26, 2010
    Inventors: In-sang Jeon, Si-hyung Lee, Jong-ryeol Yoo, Yu-gyun Shin, Suk-hun Choi
  • Patent number: 7772637
    Abstract: Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: August 10, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-Hee Sohn, Chang-Won Lee, Sun-Pil Youn, Gil-Heyun Choi, Byung-Hak Lee, Jong-Ryeol Yoo, Hee-Sook Park
  • Patent number: 7696552
    Abstract: A semiconductor device includes a first conductive layer on a semiconductor substrate, a dielectric layer including a high-k dielectric material on the first conductive layer, a second conductive layer including polysilicon doped with P-type impurities on the dielectric layer, and a third conductive layer including a metal on the second conductive layer. In some devices, a first gate structure is formed in a main cell region and includes a tunnel oxide layer, a floating gate, a first high-k dielectric layer, and a control gate. The control gate includes a layer of polysilicon doped with P-type impurities and a metal layer. A second gate structure is formed outside the main cell region and includes a tunnel oxide layer, a conductive layer, and a metal layer. A third gate structure is formed in a peripheral cell region and includes a tunnel oxide, a conductive layer, and a high-k dielectric layer having a width narrower than the conductive layer. Method embodiments are also disclosed.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: April 13, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Pil Youn, Chang-Won Lee, Woong-Hee Sohn, Gil-Heyun Choi, Jong-Ryeol Yoo, Dong-Chan Lim, Jae-Hwa Park, Byung-Hak Lee, Hee-Sook Park
  • Publication number: 20100072545
    Abstract: A recessed channel array transistor may include a substrate, a gate oxide layer, a gate electrode and source/drain regions. The substrate may have an active region and an isolation region. A recess may be formed in the active region. The gate oxide layer may be formed on the recess and the substrate. The gate oxide layer may include a first portion on an intersection between a side end of the recess and a sidewall of the active region and a second portion on a side surface of the recess. The first portion may include a thickness greater than about 70% of a thickness of the second portion. The gate electrode may be formed on the gate oxide layer. The source/drain regions may be formed in the substrate. Thus, the recessed channel array transistor may have a decreased leakage current and an increased on-current.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 25, 2010
    Inventors: Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Patent number: 7683421
    Abstract: A NAND-type flash memory device including selection transistors is provided. The device includes first and second impurity regions formed in a semiconductor substrate, and first and second selection gate patterns disposed on the semiconductor substrate between the first and second impurity regions. The first and second selection gate patterns are disposed adjacent to the first and second impurity regions, respectively. A plurality of cell gate patterns are disposed between the first and second selection gate patterns. A first anti-punchthrough impurity region that surrounds the first impurity region is provided in the semiconductor substrate. The first anti-punchthrough impurity region overlaps with a first edge of the first selection gate pattern adjacent to the first impurity region. A second anti-punchthrough impurity region that surrounds the second impurity region is provided in the semiconductor substrate.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyoung-Ho Buh, Sun-Ghil Lee, Jong-Ryeol Yoo, Deok-Hyung Lee, Guk-Hyon Yon
  • Publication number: 20100055856
    Abstract: A method of forming an oxide layer on a trench, a method of forming a semiconductor device, and a semiconductor device, the method of forming an oxide layer on a trench including forming a first trench in a first portion of a substrate and a second trench in a second portion of the substrate, the first portion being different from the second portion, performing a plasma doping process on at least one of the first portion and the second portion to implant an impurity therein, and performing an oxidation process to form an oxide layer on the substrate, a thickness of the oxide layer being determined by the impurity implanted in the substrate.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Inventors: Soo-Jin Hong, Jong-Ryeol Yoo, Dong-Woon Shin, Si-Young Choi, Sun-Ghil Lee
  • Publication number: 20100035425
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Inventors: Jeong Do Ryu, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Dong-Chan Kim, Jong-Ryeol Yoo, Seong-Hoon Jeong, Jong-Hoon Kang
  • Publication number: 20100025749
    Abstract: A semiconductor device may include an isolation layer, gate electrodes, an insulating interlayer, an impurity region, a capping layer and a plug. The isolation layer may be formed in the substrate. The gate electrodes may be formed on the substrate. The insulating interlayer may be formed on the gate electrodes. The insulating interlayer may have a contact hole between the gate electrodes. The impurity region may be in the substrate exposed through the contact hole. The capping layer may be on the impurity region. The plug may be on the capping layer. Thus, the impurities may not be lost from the impurity region.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Inventors: Jong-Ryeol Yoo, Tai-Su Park, Jong-Hoon Kang, Dong-Chan Kim, Jeong-Do Ryu, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin
  • Publication number: 20090325356
    Abstract: Provided are methods of forming a low temperature deposition layer and methods of manufacturing a semiconductor device using the same. The method of manufacturing a semiconductor device comprises forming a mask layer exposing a gate pattern on a substrate on which the gate pattern is formed, forming a sacrifice layer on the mask layer and on a substrate not covered by the mask layer using a plasma ion immersion implantation and deposition (PIIID), and doping a substrate adjacent to both sidewalls of the gate pattern with an impurity.
    Type: Application
    Filed: April 29, 2009
    Publication date: December 31, 2009
    Inventors: Dong-Woon SHIN, Si-Young Choi, Tai-Su Park, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Publication number: 20090315137
    Abstract: A semiconductor device includes: a trench device isolating region formed in a substrate to define a photodiode active region; a channel stop impurity region formed in the substrate contacting the device isolating region, wherein the channel stop impurity region surrounds a bottom and a sidewall of the device isolating region; and a photodiode formed within the photodiode active region.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Inventors: DOO-WON KWON, JONG-RYEOL YOO, CHANG-ROK MOON
  • Publication number: 20090298273
    Abstract: Methods of forming a gate electrode can be provided by forming a trench in a substrate, conformally forming a polysilicon layer to provide a polysilicon conformal layer in the trench defining a recess surrounded by the polysilicon conformal layer, wherein the polysilicon conformal layer is formed to extend upwardly from a surface of the substrate to have a protrusion and the protrusion has a vertical outer sidewall adjacent the surface of the substrate, forming a tungsten layer in the recess to form an upper surface that includes an interface between the polysilicon conformal layer and the tungsten layer, and forming a capping layer being in direct contact with top surfaces of the polysilicon conformal layer and the tungsten layer without any intervening layers.
    Type: Application
    Filed: July 31, 2009
    Publication date: December 3, 2009
    Inventors: Byung-Hak Lee, Chang-Won Lee, Hee-Sook Park, Woong-Hee Sohn, Sun-Pil Youn, Jong-ryeol Yoo
  • Patent number: 7595213
    Abstract: A semiconductor device includes: a trench device isolating region formed in a substrate to define a photodiode active region; a channel stop impurity region formed in the substrate contacting the device isolating region, wherein the channel stop impurity region surrounds a bottom and a sidewall of the device isolating region; and a photodiode formed within the photodiode active region.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: September 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-Won Kwon, Jong-Ryeol Yoo, Chang-Rok Moon
  • Patent number: 7582931
    Abstract: A gate electrode of a transistor can include an interface between a polysilicon conformal layer and a tungsten layer thereon in a trench in a substrate and a capping layer extending across the trench and covering the interface. Related methods are also disclosed.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Hak Lee, Chang-Won Lee, Hee-Sook Park, Woong-Hee Sohn, Sun-Pil Youn, Jong-ryeol Yoo
  • Patent number: 7579249
    Abstract: Provided are a DRAM semiconductor device and a method for fabricating the DRAM semiconductor device. The method provides forming a silicon epitaxial layer on a source/drain region of a cell region and a peripheral circuit region using selective epitaxial growth (SEG), thereby forming a raised active region. In addition, in the DRAM semiconductor device, a metal silicide layer and a metal pad are formed on the silicon epitaxial layer in the source/drain region of the cell region. By doing this, the DRAM device is capable of forming a source/drain region as a shallow junction region, reducing the occurrence of leakage current and lowering the contact resistance with the source/drain region.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: August 25, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-sung Kim, Byeong-chan Lee, Jong-ryeol Yoo, Si-young Choi, Deok-hyung Lee
  • Publication number: 20090173986
    Abstract: Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
    Type: Application
    Filed: March 10, 2009
    Publication date: July 9, 2009
    Inventors: Woong-Hee Sohn, Chang-Won Lee, Sun-Pil Youn, Gil-Heyun Choi, Byung-Hak Lee, Jong-Ryeol Yoo, Hee-Sook Park
  • Patent number: 7534709
    Abstract: Embodiments of the present invention include semiconductor devices that can be made with relatively low resistance, and methods of forming the semiconductor devices. A resistance reducing layer is formed between a polysilicon layer and a metal layer. As a result, an interface resistance between the polysilicon layer and the metal layer is greatly reduced and a distribution of the interface resistance is very uniform. As a result, a conductive structure including the resistance reducing layer has a greatly reduced sheet resistance to improve electrical characteristics of a semiconductor device having the conductive structure.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 19, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwa Park, Gil-Heyun Choi, Chang-Won Lee, Byung-Hak Lee, Hee-Sook Park, Woong-Hee Sohn, Jong-Ryeol Yoo, Sun-Pil Yun, Jang-Hee Lee, Dong-Chan Lim
  • Patent number: 7521316
    Abstract: Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-Hee Sohn, Chang-Won Lee, Sun-Pil Youn, Gil-Heyun Choi, Byung-Hak Lee, Jong-Ryeol Yoo, Hee-Sook Park
  • Patent number: 7511340
    Abstract: Semiconductor devices have gate structures on a semiconductor substrate with first spacers on sidewalls of the respective gate structures. First contact pads are positioned between the gate structures and have heights lower than the heights of the gate structures. Second spacers are disposed on sidewalls of the first spacers and on exposed sidewalls of the first contact pads. Second contact pads are disposed on the first contact pads.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Chul-Sung Kim, In-Soo Jung, Jong-Ryeol Yoo