Patents by Inventor Jong-ryeol Yoo

Jong-ryeol Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080135888
    Abstract: A FinFET may include a semiconductor fin having a top surface and a sidewall having different crystal planes. A gate dielectric layer on the top surface and on the sidewall has different thicknesses. A gate electrode is formed on the gate dielectric layer across the top surface and sidewall of the semiconductor fin.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 12, 2008
    Inventors: Deok-Hyung Lee, Sun-Ghil Lee, Jong-Ryeol Yoo, Si-Young Choi
  • Patent number: 7371669
    Abstract: In a method for forming a gate in a semiconductor device, a first preliminary gate structure is formed on a substrate. The first preliminary gate structure includes a gate oxide layer, a polysilicon layer pattern and a tungsten layer pattern sequentially stacked on the substrate. A primary oxidation process is performed using oxygen radicals at a first temperature for adjusting a thickness of the gate oxide layer to form a second preliminary gate structure having tungsten oxide. The tungsten oxide is reduced to a tungsten material using a gas containing hydrogen to form a gate structure. The tungsten oxide may not be formed on the gate structure so that generation of the whiskers may be suppressed. Thus, a short between adjacent wirings may not be generated.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: May 13, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Pil Youn, Chang-Won Lee, Woong-Hee Sohn, Gil-Heyun Choi, Jong-Ryeol Yoo, Jang-Hee Lee, Jae-Hwa Park, Dong-Chan Lim, Byung-Hak Lee, Hee-Sook Park
  • Publication number: 20080083944
    Abstract: A NAND-type flash memory device including selection transistors is provided. The device includes first and second impurity regions formed in a semiconductor substrate, and first and second selection gate patterns disposed on the semiconductor substrate between the first and second impurity regions. The first and second selection gate patterns are disposed adjacent to the first and second impurity regions, respectively. A plurality of cell gate patterns are disposed between the first and second selection gate patterns. A first anti-punchthrough impurity region that surrounds the first impurity region is provided in the semiconductor substrate. The first anti-punchthrough impurity region overlaps with a first edge of the first selection gate pattern adjacent to the first impurity region. A second anti-punchthrough impurity region that surrounds the second impurity region is provided in the semiconductor substrate.
    Type: Application
    Filed: September 4, 2007
    Publication date: April 10, 2008
    Inventors: Gyoung-Ho Buh, Sun-Ghil Lee, Jong-Ryeol Yoo, Deok-Hyung Lee, Guk-Hyon Yon
  • Publication number: 20080073730
    Abstract: A method for forming a semiconductor device includes forming at least one gate electrode having a bent structure along a first direction on a semiconductor substrate, the gate electrode having first and second vertical portions, forming at least one semiconductor fin along a second direction on the semiconductor substrate, the semiconductor fin positioned between the first and second vertical portions of the gate electrode, forming a first epitaxial layer on the semiconductor fin, the first epitaxial layer including a source/drain impurity region, and forming a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including a contact impurity region.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 27, 2008
    Inventors: Deok-Hyung Lee, Sun-Ghil Lee, Jong-Ryeol Yoo, Byeong-Chan Lee, In-Soo Jung
  • Patent number: 7338867
    Abstract: Semiconductor devices have gate structures on a semiconductor substrate with first spacers on sidewalls of the respective gate structures. First contact pads are positioned between the gate structures and have heights lower than the heights of the gate structures. Second spacers are disposed on sidewalls of the first spacers and on exposed sidewalls of the first contact pads. Second contact pads are disposed on the first contact pads.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: March 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Chul-Sung Kim, In-Soo Jung, Jong-Ryeol Yoo
  • Publication number: 20080048262
    Abstract: Provided are a fin field effect transistor (FinFET) with recess source/drain regions, and a method of forming the same. One example embodiment may provide a semiconductor device including a fin provided on a substrate and extending in a first direction, the fin including a stepped portion, and a gate electrode extending in a second direction crossing the first direction, and provided on a top surface and side surfaces of the stepped portion of the fin.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 28, 2008
    Inventors: Deok-Hyung Lee, Sun-Ghil Lee, Gyeong-Ho Buh, Jong-Ryeol Yoo, Si-Young Choi, Tai-Su Park
  • Publication number: 20070257324
    Abstract: Semiconductor devices have gate structures on a semiconductor substrate with first spacers on sidewalls of the respective gate structures. First contact pads are positioned between the gate structures and have heights lower than the heights of the gate structures. Second spacers are disposed on sidewalls of the first spacers and on exposed sidewalls of the first contact pads. Second contact pads are disposed on the first contact pads.
    Type: Application
    Filed: July 18, 2007
    Publication date: November 8, 2007
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Chul-Sung Kim, In-Soo Jung, Jong-Ryeol Yoo
  • Publication number: 20070178642
    Abstract: Provided are a DRAM semiconductor device and a method for fabricating the DRAM semiconductor device. The method provides forming a silicon epitaxial layer on a source/drain region of a cell region and a peripheral circuit region using selective epitaxial growth (SEG), thereby forming a raised active region. In addition, in the DRAM semiconductor device, a metal silicide layer and a metal pad are formed on the silicon epitaxial layer in the source/drain region of the cell region. By doing this, the DRAM device is capable of forming a source/drain region as a shallow junction region, reducing the occurrence of leakage current and lowering the contact resistance with the source/drain region.
    Type: Application
    Filed: March 20, 2007
    Publication date: August 2, 2007
    Inventors: Chul-sung Kim, Byeong-chan Lee, Jong-ryeol Yoo, Si-young Choi, Deok-hyung Lee
  • Publication number: 20070141801
    Abstract: A semiconductor device includes: a trench device isolating region formed in a substrate to define a photodiode active region; a channel stop impurity region formed in the substrate contacting the device isolating region, wherein the channel stop impurity region surrounds a bottom and a sidewall of the device isolating region; and a photodiode formed within the photodiode active region.
    Type: Application
    Filed: September 7, 2006
    Publication date: June 21, 2007
    Inventors: Doo-Won Kwon, Jong-Ryeol Yoo, Chang-Rok Moon
  • Publication number: 20070054453
    Abstract: Methods of forming an integrated circuit memory device include forming a dielectric layer on a substrate and forming a charge storing layer on an upper surface of the dielectric layer using a plasma doping process with a remaining portion of the dielectric layer under the charge storing layer defining a tunnel dielectric layer. A blocking dielectric layer is formed on the charge storing layer and a gate electrode layer is formed on the blocking dielectric layer.
    Type: Application
    Filed: August 14, 2006
    Publication date: March 8, 2007
    Inventors: Gyoung-Ho Buh, Tai-Su Park, Chang-Woo Ryoo, Jong-Ryeol Yoo, Young-Chang Song
  • Publication number: 20060226455
    Abstract: An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
    Type: Application
    Filed: June 9, 2006
    Publication date: October 12, 2006
    Inventors: Byeong-chan Lee, Si-young Choi, Jong-ryeol Yoo, Yong-hoon Son, In-soo Jung, Deok-hyung Lee
  • Patent number: 7081391
    Abstract: An integrated circuit device includes a gate electrode formed on an active region of an integrated circuit device and on a field isolation layer adjacent to the active region. A source region and a drain region are in the active region on alternate sides of the gate electrode. At least one buried insulation layer is beneath the drain region or the source region.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: July 25, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-chan Lee, Si-young Choi, Jong-ryeol Yoo, Yong-hoon Son, In-soo Jung, Deok-hyung Lee
  • Publication number: 20060115967
    Abstract: In a method of manufacturing a semiconductor device including a polysilicon layer on which a heat treatment is performed in hydrogen atmosphere, a preliminary polysilicon layer is formed on a semiconductor substrate. Fluorine (F) impurities are implanted onto the preliminary polysilicon layer, so that the preliminary polysilicon layer is formed into a polysilicon layer. A main heat treatment is performed on the polysilicon layer, thereby preventing a void caused by the fluorine (F) in the polysilicon layer. A subsidiary heat treatment is further performed on the polysilicon layer prior to the main heat treatment, thereby activating dopants in the polysilicon layer. Electrical characteristics and performance of a semiconductor device are improved since the void is sufficiently prevented in the polysilicon layer.
    Type: Application
    Filed: October 7, 2005
    Publication date: June 1, 2006
    Inventors: Hee-Sook Park, Gil-Heyun Choi, Chang-Won Lee, Byung-Hak Lee, Jong-Ryeol Yoo, Dong-Chan Lim, Jae-Hwa Park, Sun-Pil Youn, Woong-Hee Sohn
  • Publication number: 20060110900
    Abstract: In a method for forming a gate in a semiconductor device, a first preliminary gate structure is formed on a substrate. The first preliminary gate structure includes a gate oxide layer, a polysilicon layer pattern and a tungsten layer pattern sequentially stacked on the substrate. A primary oxidation process is performed using oxygen radicals at a first temperature for adjusting a thickness of the gate oxide layer to form a second preliminary gate structure having tungsten oxide. The tungsten oxide is reduced to a tungsten material using a gas containing hydrogen to form a gate structure. The tungsten oxide may not be formed on the gate structure so that generation of the whiskers may be suppressed. Thus, a short between adjacent wirings may not be generated.
    Type: Application
    Filed: November 18, 2005
    Publication date: May 25, 2006
    Inventors: Sun-Pil Youn, Chang-Won Lee, Woong-Hee Sohn, Gil-Heyun Choi, Jong-Ryeol Yoo, Jang-Hee Lee, Jae-Hwa Park, Dong-Chan Lim, Byung-Hak Lee, Hee-Sook Park
  • Publication number: 20060081916
    Abstract: Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
    Type: Application
    Filed: September 7, 2005
    Publication date: April 20, 2006
    Inventors: Woong-Hee Sohn, Chang-Won Lee, Sun-Pil Youn, Gil-Heyun Choi, Byung-Hak Lee, Jong-Ryeol Yoo, Hee-Sook Park
  • Publication number: 20060079075
    Abstract: A gate structure includes a gate insulation layer on a substrate, a polysilicon layer pattern on the gate insulation layer, a composite metal layer pattern on the polysilicon layer pattern, and a metal silicide layer pattern on a sidewall of the composite metal layer pattern.
    Type: Application
    Filed: August 11, 2005
    Publication date: April 13, 2006
    Inventors: Chang-Won Lee, Sun-Pil Youn, Gil-Heyun Choi, Byung-Hak Lee, Hee-Sook Park, Dong-Chan Lim, Jong-Ryeol Yoo, Woong-Hee Sohn
  • Publication number: 20060068535
    Abstract: Methods of forming semiconductor devices are provided. A preliminary gate structure is formed on a semiconductor substrate. The preliminary gate structure includes a gate insulation layer pattern, a polysilicon layer pattern and a conductive layer pattern. A first oxidation process is performed on the preliminary gate structure using an oxygen radical. The first oxidation process is carried out at a first temperature. A second oxidation process is carried out on the oxidized preliminary gate structure to provide a gate structure on the substrate, the second oxidation process being carried out at a second temperature, the second temperature being higher than the first temperature.
    Type: Application
    Filed: August 31, 2005
    Publication date: March 30, 2006
    Inventors: Sun-Pil Youn, Chang-Won Lee, Woong-Hee Sohn, Gil-Heyun Choi, Jong-Ryeol Yoo, Dong-Chan Lim, Byung-Hak Lee, Hee-Sook Park
  • Publication number: 20060057794
    Abstract: A semiconductor device includes a first conductive layer on a semiconductor substrate, a dielectric layer including a high-k dielectric material on the first conductive layer, a second conductive layer including polysilicon doped with P-type impurities on the dielectric layer, and a third conductive layer including a metal on the second conductive layer. In some devices, a first gate structure is formed in a main cell region and includes a tunnel oxide layer, a floating gate, a first high-k dielectric layer, and a control gate. The control gate includes a layer of polysilicon doped with P-type impurities and a metal layer. A second gate structure is formed outside the main cell region and includes a tunnel oxide layer, a conductive layer, and a metal layer. A third gate structure is formed in a peripheral cell region and includes a tunnel oxide, a conductive layer, and a high-k dielectric layer having a width narrower than the conductive layer. Method embodiments are also disclosed.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 16, 2006
    Inventors: Sun-Pil Youn, Chang-Won Lee, Woong-Hee Sohn, Gil-Heyun Choi, Jong-Ryeol Yoo, Dong-Chan Lim, Jae-Hwa Park, Byung-Hak Lee, Hee-Sook Park
  • Publication number: 20060051921
    Abstract: In methods of manufacturing semiconductor devices, a preliminary gate oxide layer is formed on a substrate. A surface treatment process is performed on the preliminary gate oxide layer that reduces a diffusion of an oxidizing agent in the preliminary gate oxide layer to form a gate oxide layer on the substrate. A preliminary gate structure is formed on the gate oxide layer. The preliminary gate structure includes a first conductive layer pattern on the gate oxide layer and a second conductive layer pattern on the first conductive layer pattern. An oxidation process is performed on the preliminary gate structure using the oxidizing agent to form an oxide layer on a sidewall of the first conductive layer pattern and on the gate oxide layer, and to round at least one edge portion of the first conductive layer pattern.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 9, 2006
    Inventors: Sun-Pil Youn, Gil-Heyun Choi, Chang-Won Lee, Byung-Hak Lee, Hee-Sook Park, Dong-Chan Lim, Jae-Hwa Park, Woong-Hee Sohn, Jong-Ryeol Yoo
  • Publication number: 20060014355
    Abstract: Embodiments of the present invention include semiconductor devices that can be made with relatively low resistance, and methods of forming the semiconductor devices. A resistance reducing layer is formed between a polysilicon layer and a metal layer. As a result, an interface resistance between the polysilicon layer and the metal layer is greatly reduced and a distribution of the interface resistance is very uniform. As a result, a conductive structure including the resistance reducing layer has a greatly reduced sheet resistance to improve electrical characteristics of a semiconductor device having the conductive structure.
    Type: Application
    Filed: September 23, 2005
    Publication date: January 19, 2006
    Inventors: Jae-Hwa Park, Gil-Heyun Choi, Chang-Won Lee, Byung-Hak Lee, Hee-Sook Park, Woong-Hee Sohn, Jong-Ryeol Yoo, Sun-Pil Yun, Jang-Hee Lee, Dong-Chan Lim