Patents by Inventor Jose Marques

Jose Marques has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10600671
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: March 24, 2020
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10576853
    Abstract: A method for manufacturing a vehicle seat cushion assembly includes providing an outer material to define an outer seating surface. A backing material is sewn to the outer material using a first sewing line against which a wadding material is placed in a central region of the cushion. To secure the wadding material, a second sewing line is run. Left and right wadding materials are placed between the sewing lines and the edges of the cushion. Additional sewing lines laterally cross the longitudinal sewing lines to imbue the cushion with a wrist watch-like appearance.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: March 3, 2020
    Assignee: LEAR CORPORATION
    Inventors: Jose Marques, Nathalie Navarro
  • Publication number: 20190385885
    Abstract: A micro-device structure comprises a source substrate comprising sacrificial portions laterally spaced apart by anchors. Each sacrificial portion is exposed through an opening. A micro-device is disposed on each sacrificial portion and laterally attached to an anchor by a multi-layer tether. In certain embodiments, a micro-device structure is constructed by providing the source substrate, disposing micro-devices on each sacrificial portion, depositing a first tether layer over at least a portion of the source substrate and the micro-device, depositing a second tether layer over the first tether layer, and patterning the first tether layer and the second tether layer to form (i) a multi-layer tether for each of the micro-devices such that the multi-layer tether laterally attaches the micro-device to one of the anchors, and (ii) an opening exposing each of the sacrificial portions.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventor: António José Marques Trindade
  • Publication number: 20190385886
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 19, 2019
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Publication number: 20190326149
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10431487
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 1, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10395966
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Publication number: 20190088526
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Application
    Filed: November 15, 2018
    Publication date: March 21, 2019
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10224231
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 5, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Publication number: 20180334066
    Abstract: A method for manufacturing a vehicle seat cushion assembly includes providing a perforated outer material to define an outer seating surface. A backing material is sewn to the outer material using a first sewing line against which a wadding material is placed in a central region of the cushion. The wadding material is further secured by a hook and loop fastening product to the backing material. To secure the wadding material, a second sewing line is run. Left and right wadding materials are placed between the sewing lines and the edges of the cushion. Additional sewing lines laterally cross the longitudinal sewing lines to imbue the cushion with a wrist watch-like appearance.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 22, 2018
    Applicant: LEAR CORPORATION
    Inventors: Jose MARQUES, Nathalie NAVARRO
  • Publication number: 20180334064
    Abstract: A method for manufacturing a vehicle seat cushion assembly includes providing an outer material to define an outer seating surface. A backing material is sewn to the outer material using a first sewing line against which a wadding material is placed in a central region of the cushion. To secure the wadding material, a second sewing line is run. Left and right wadding materials are placed between the sewing lines and the edges of the cushion. Additional sewing lines laterally cross the longitudinal sewing lines to imbue the cushion with a wrist watch-like appearance.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 22, 2018
    Applicant: LEAR CORPORATION
    Inventors: Jose MARQUES, Nathalie NAVARRO
  • Publication number: 20180323178
    Abstract: An exemplary micro-device and substrate structure includes a destination substrate and one or more contact pads disposed thereon, a micro-device disposed on or over the destination substrate, and a layer of cured adhesive disposed on the destination substrate. The micro-device comprises at least one electrical contact. The at least one electrical contact is in direct electrical contact with the one or more contact pads. The adhesive layer adheres the micro-device to the destination substrate and is in contact with the one or more contact pads. An exemplary method of making a micro-device and substrate structure includes providing a destination substrate and one or more contact pads disposed thereon, coating a layer of curable adhesive, disposing a micro-device comprising at least one electrical contact on the layer and curing the layer thereby directly electrically contacting the at least one electrical contact with the one or more contact pads.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 8, 2018
    Inventors: Matthew Meitl, Brook Raymond, Ronald S. Cok, Christopher Andrew Bower, Salvatore Bonafede, Erich Radauscher, Carl Ray Prevatte, Jr., António José Marques Trindade, Tanya Yvette Moore
  • Publication number: 20180286734
    Abstract: A method of micro-transfer printing a micro-device from a support substrate comprises providing the micro-device, forming a pocket in or on the support substrate, providing a release layer over the micro-device or the pocket, optionally providing a base layer on a side of the release layer opposite the micro-device, disposing the micro-device in the pocket with the release layer between the micro-device and the support substrate so that no portion of the support substrate or the optional base layer is in contact with the micro-device, etching the release layer to completely separate the micro-device from the support substrate or the optional base layer, providing a stamp having a conformable stamp post and pressing the stamp post against the separated micro-device to adhere the micro-device to the stamp post, and removing the stamp and micro-device from the support substrate.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 4, 2018
    Inventors: Matthew Meitl, Brook Raymond, Ronald S. Cok, Christopher Andrew Bower, Salvatore Bonafede, Erich Radauscher, Carl Ray Prevatte, JR., António José Marques Trindade, Tanya Yvette Moore
  • Publication number: 20180226287
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Publication number: 20180201777
    Abstract: Described herein are polymer compositions comprising a matrix polymer component comprising a dynamic cross-linked polymer composition; and a fibrillated fluoropolymer, a fibrillated fluoropolymer encapsulated by an encapsulating polymer, or a combination thereof. Methods of making and using these polymer compositions are also described.
    Type: Application
    Filed: July 6, 2016
    Publication date: July 19, 2018
    Inventors: Chiel Albertus LEENDERS, Ramon GROOTE, Johannes Martinus Dina GOOSSENS, Vaidyanath RAMAKRISHNAN, Frederico Jose Marques Ferreira CUSTODIO, Satish Kumar GAGGAR
  • Patent number: 9980341
    Abstract: A multi-LED component comprises a component substrate comprising a common electrode, a first electrode, a second electrode, a plurality of first LEDs, and a plurality of second LEDs all disposed on the component substrate. Each first LED and each second LED comprises first and second LED contacts for providing power to each corresponding LED to cause the LED to emit light. The first LED contact of each first LED and each second LED is electrically connected to the common electrode. The second LED contacts of the first LEDs are electrically connected to the first electrode. The second LED contacts of the second LEDs are electrically connected to the second electrode so that the first LEDs are electrically connected in parallel and the second LEDs are electrically connected in parallel.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 22, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, António José Marques Trindade, Ronald S. Cok
  • Publication number: 20180138071
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Publication number: 20180084614
    Abstract: A multi-LED component comprises a component substrate comprising a common electrode, a first electrode, a second electrode, a plurality of first LEDs, and a plurality of second LEDs all disposed on the component substrate. Each first LED and each second LED comprises first and second LED contacts for providing power to each corresponding LED to cause the LED to emit light. The first LED contact of each first LED and each second LED is electrically connected to the common electrode. The second LED contacts of the first LEDs are electrically connected to the first electrode. The second LED contacts of the second LEDs are electrically connected to the second electrode so that the first LEDs are electrically connected in parallel and the second LEDs are electrically connected in parallel.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 22, 2018
    Inventors: Christopher Bower, António José Marques Trindade, Ronald S. Cok
  • Patent number: 9786646
    Abstract: A repairable matrix-addressed system includes a system substrate, an array of electrically conductive row lines, and an array of electrically conductive column lines disposed over the system substrate. The row lines extend over the system substrate in a row direction and the column lines extend over the system substrate in a column direction different from the row direction to define an array of non-electrically conductive intersections between the row lines and the column lines. An array of electrically conductive line segments is disposed over the system substrate. The line segments extend over the system substrate substantially parallel to the row direction and have a line segment length that is less than the distance between adjacent column lines. Each line segment is electrically connected to a column line. One or more devices are electrically connected to each row line and to each line segment adjacent to the row line.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 10, 2017
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl, António José Marques Trindade
  • Publication number: 20170186740
    Abstract: A repairable matrix-addressed system includes a system substrate, an array of electrically conductive row lines, and an array of electrically conductive column lines disposed over the system substrate. The row lines extend over the system substrate in a row direction and the column lines extend over the system substrate in a column direction different from the row direction to define an array of non-electrically conductive intersections between the row lines and the column lines. An array of electrically conductive line segments is disposed over the system substrate. The line segments extend over the system substrate substantially parallel to the row direction and have a line segment length that is less than the distance between adjacent column lines. Each line segment is electrically connected to a column line. One or more devices are electrically connected to each row line and to each line segment adjacent to the row line.
    Type: Application
    Filed: February 10, 2016
    Publication date: June 29, 2017
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl, António José Marques Trindade