Patents by Inventor Joung-Joo Lee

Joung-Joo Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190088540
    Abstract: Methods and apparatus for filling features with cobalt are provided herein. In some embodiments, a method for processing a substrate includes: depositing a first cobalt layer via a chemical vapor deposition (CVD) process atop a substrate and within a feature disposed in the substrate; and at least partially filling the feature with cobalt or cobalt containing material by performing a plasma process in a physical vapor deposition (PVD) chamber having a cobalt target to reflow a portion of the first cobalt layer into the feature. The PVD chamber may be configured to simultaneously deposit cobalt or cobalt containing material within the feature from a cobalt target disposed in the PVD chamber.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Wenting Hou, Jianxin Lei, Joung Joo Lee, Rong Tao
  • Patent number: 10157733
    Abstract: Embodiments of method for igniting a plasma are provided herein. In some embodiments, a method for igniting a plasma includes: flowing a process gas into a process chamber to increase a pressure within the process chamber to a first pressure; applying a first bias voltage from a collimator power source to a collimator disposed within the process chamber; and applying a second power to a sputtering source disposed in the process chamber above the collimator after the first pressure has been reached and the first bias voltage is applied to ignite the plasma.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: December 18, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shouyin Zhang, Fuhong Zhang, Joung Joo Lee
  • Patent number: 10014179
    Abstract: Methods for processing a substrate include: (a) depositing a cobalt layer to a first thickness within a first plurality of features and a second plurality of features formed in a substrate, wherein each of the first plurality of features and each of the second plurality of features comprises an opening, and wherein a width of the openings of the first plurality of features is less than a width of the openings of the second plurality of features; and (b) heating the substrate to a first temperature to fill the first plurality of features with cobalt material while simultaneously depositing a fill material on the substrate to fill the second plurality of features.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: July 3, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rong Tao, Tae Hong Ha, Xianmin Tang, Joung Joo Lee
  • Patent number: 9953813
    Abstract: Methods and apparatus for improved metal ion filtering are provided herein. In some embodiments, a substrate processing apparatus includes: a chamber body and a chamber lid disposed on the chamber body defining a processing region within the chamber body beneath the lid; a collimator disposed in the processing region; a power source coupled to the collimator; and a first set of magnets disposed around the chamber body above the collimator and a second set of magnets disposed around the chamber body and below the collimator that together create a guidance magnetic field that is substantially orthogonal to the collimator.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: April 24, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xianmin Tang, Joung Joo Lee, Guojun Liu
  • Patent number: 9905443
    Abstract: Apparatus for improving temperature uniformity across a substrate are provided herein. In some embodiments, a deposition ring for use in a substrate processing system to process a substrate may include an annular body having a first surface, an opposing second surface, and a central opening passing through the first and second surfaces, wherein the second surface is configured to be disposed over a substrate support having a support surface to support a substrate having a given width, and wherein the opening is sized to expose a predominant portion of the support surface; and wherein the first surface includes at least one reflective portion configured to reflect heat energy toward a central axis of the annular body, wherein the at least one reflective portion has a surface area that is about 5 to about 50 percent of a total surface area of the first surface.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 27, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anantha K. Subramani, Joseph M. Ranish, Xiaoxiong Yuan, Ashish Goel, Joung Joo Lee
  • Patent number: 9831074
    Abstract: The present invention provides an apparatus including a bipolar collimator disposed in a physical vapor deposition chamber and methods of using the same. In one embodiment, an apparatus includes a chamber body and a chamber lid disposed on the chamber body defining a processing region therein, a collimator disposed in the processing region, and a power source coupled to the collimator.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 28, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Joung Joo Lee, Guojun Liu, Wei W. Wang, Prashanth Kothnur
  • Publication number: 20170253959
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a process chamber for processing a substrate having a given diameter includes: an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a rotatable magnetron above the target to form an annular plasma in the peripheral portion; a substrate support disposed in the interior volume to support a substrate having the given diameter; a first set of magnets disposed about the body to form substantially vertical magnetic field lines in the peripheral portion; a second set of magnets disposed about the body and above the substrate support to form magnetic field lines directed toward a center of the support surface; a first power source to electrically bias the target; and a second power source to electrically bias the substrate support.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Publication number: 20170221685
    Abstract: Embodiments of method for igniting a plasma are provided herein. In some embodiments, a method for igniting a plasma includes: flowing a process gas into a process chamber to increase a pressure within the process chamber to a first pressure; applying a first bias voltage from a collimator power source to a collimator disposed within the process chamber; and applying a second power to a sputtering source disposed in the process chamber above the collimator after the first pressure has been reached and the first bias voltage is applied to ignite the plasma.
    Type: Application
    Filed: January 18, 2017
    Publication date: August 3, 2017
    Inventors: Shouyin ZHANG, Fuhong ZHANG, Joung Joo LEE
  • Publication number: 20170098540
    Abstract: Methods for processing a substrate are provided herein. In some embodiments, a method of processing a substrate includes: heating a substrate disposed within a processing volume of a substrate processing chamber to a temperature of up to about 400 degrees Celsius, wherein the substrate comprises a first surface, an opposing second surface, and an opening formed in the first surface and extending towards the opposing second surface, and wherein the second surface comprises a conductive material disposed in the second surface and aligned with the opening; and exposing the substrate to a process gas comprising about 80 to about 100 wt. % of an alcohol to reduce a contaminated surface of the conductive material.
    Type: Application
    Filed: September 29, 2016
    Publication date: April 6, 2017
    Inventors: Xiangjin XIE, Feng Q. LIU, Daping YAO, Alexander JANSEN, Joung Joo LEE, Adolph Miller ALLEN, Xianmin TANG, Mei CHANG
  • Patent number: 9460959
    Abstract: Methods for processing a substrate are provided herein. In some embodiments, method of processing a substrate includes: heating a substrate disposed within a processing volume of a substrate processing chamber to a temperature of up to about 400 degrees Celsius, wherein the substrate comprises a first surface, an opposing second surface, and an opening formed in the first surface and extending towards the opposing second surface, and wherein the second surface comprises a conductive material disposed in the second surface and aligned with the opening; and exposing the substrate to a process gas comprising about 80 to about 100 wt % of an alcohol to reduce a contaminated surface of the conductive material.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 4, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Feng Q. Liu, Daping Yao, Alexander Jansen, Joung Joo Lee, Adolph Miller Allen, Xianmin Tang, Mei Chang
  • Publication number: 20160240432
    Abstract: Methods for processing a substrate include: (a) depositing a cobalt layer to a first thickness within a first plurality of features and a second plurality of features formed in a substrate, wherein each of the first plurality of features and each of the second plurality of features comprises an opening, and wherein a width of the openings of the first plurality of features is less than a width of the openings of the second plurality of features; and (b) heating the substrate to a first temperature to fill the first plurality of features with cobalt material while simultaneously depositing a fill material on the substrate to fill the second plurality of features.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 18, 2016
    Inventors: RONG TAO, TAE HONG HA, XIANMIN TANG, JOUNG JOO LEE
  • Patent number: 9315891
    Abstract: In some embodiments, a method for processing a substrate in a process chamber having a substrate support configured to move in a direction perpendicular to a top surface of a cover ring of a process kit may include positioning the substrate support in a first position such that a top surface of the substrate is positioned about 3 mm above to about 10 mm below a top surface of a cover ring of a process kit disposed about the periphery of the substrate support; performing a plasma deposition process while the substrate support is in the first position; moving the substrate support to a second position such that the top surface of the substrate is disposed about 3 mm below to about 15 mm above the top surface of the cover ring; and performing a plasma etch process while the substrate support is in the second position.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 19, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joung Joo Lee, William Johanson, Keith A. Miller, Alan A. Ritchie
  • Publication number: 20150357171
    Abstract: Methods and apparatus for improved metal ion filtering are provided herein. In some embodiments, a substrate processing apparatus includes: a chamber body and a chamber lid disposed on the chamber body defining a processing region within the chamber body beneath the lid; a collimator disposed in the processing region; a power source coupled to the collimator; and a first set of magnets disposed around the chamber body above the collimator and a second set of magnets disposed around the chamber body and below the collimator that together create a guidance magnetic field that is substantially orthogonal to the collimator.
    Type: Application
    Filed: May 8, 2015
    Publication date: December 10, 2015
    Inventors: XIANMIN TANG, JOUNG JOO LEE, GUOJUN LIU
  • Publication number: 20150114823
    Abstract: The present invention provides an apparatus including a bipolar collimator disposed in a physical vapor deposition chamber and methods of using the same. In one embodiment, an apparatus includes a chamber body and a chamber lid disposed on the chamber body defining a processing region therein, a collimator disposed in the processing region, and a power source coupled to the collimator.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Inventors: Joung Joo LEE, Guojun LIU, Wei W. WANG, Prashanth KOTHNUR
  • Patent number: 8841211
    Abstract: Methods for forming interconnect structures are provided herein. In some embodiments, a method for forming an interconnect on a substrate may include depositing a material atop an upper surface of the substrate and atop one or more surfaces of a feature disposed in the substrate by a first deposition process that deposits the material at a faster rate on the upper surface than on a bottom surface of the feature; depositing the material atop the upper surface of the substrate and atop one or more surfaces of the feature by a second deposition process that deposits the material at a greater rate on the bottom surface of the feature than on the upper surface of the substrate; and heating the deposited material to draw the deposited material towards the bottom surface of the feature to at least partially fill the feature with the deposited material.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 23, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Joung Joo Lee, Xianmin Tang, Tza-Jing Gung
  • Publication number: 20140263169
    Abstract: In some embodiments, a method for processing a substrate in a process chamber having a substrate support configured to move in a direction perpendicular to a top surface of a cover ring of a process kit may include positioning the substrate support in a first position such that a top surface of the substrate is positioned about 3 mm above to about 10 mm below a top surface of a cover ring of a process kit disposed about the periphery of the substrate support; performing a plasma deposition process while the substrate support is in the first position; moving the substrate support to a second position such that the top surface of the substrate is disposed about 3 mm below to about 15 mm above the top surface of the cover ring; and performing a plasma etch process while the substrate support is in the second position.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JOUNG JOO LEE, WILLIAM JOHANSON, KEITH A. MILLER, ALAN A. RITCHIE
  • Patent number: 8476162
    Abstract: Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: July 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Tae Hong Ha, Winsor Lam, Tza-Jing Gung, Joung Joo Lee
  • Publication number: 20130055952
    Abstract: Apparatus for improving temperature uniformity across a substrate are provided herein. In some embodiments, a deposition ring for use in a substrate processing system to process a substrate may include an annular body having a first surface, an opposing second surface, and a central opening passing through the first and second surfaces, wherein the second surface is configured to be disposed over a substrate support having a support surface to support a substrate having a given width, and wherein the opening is sized to expose a predominant portion of the support surface; and wherein the first surface includes at least one reflective portion configured to reflect heat energy toward a central axis of the annular body, wherein the at least one reflective portion has a surface area that is about 5 to about 50 percent of a total surface area of the first surface.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ANANTHA K. SUBRAMANI, JOSEPH M. RANISH, XIAOXIONG YUAN, ASHISH GOEL, JOUNG JOO LEE
  • Publication number: 20120108058
    Abstract: Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
    Type: Application
    Filed: October 7, 2011
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: TAE HONG HA, WINSOR LAM, TZA-JING GUNG, JOUNG JOO LEE
  • Publication number: 20110306200
    Abstract: Methods for forming interconnect structures are provided herein. In some embodiments, a method for forming an interconnect on a substrate may include depositing a material atop an upper surface of the substrate and atop one or more surfaces of a feature disposed in the substrate by a first deposition process that deposits the material at a faster rate on the upper surface than on a bottom surface of the feature; depositing the material atop the upper surface of the substrate and atop one or more surfaces of the feature by a second deposition process that deposits the material at a greater rate on the bottom surface of the feature than on the upper surface of the substrate; and heating the deposited material to draw the deposited material towards the bottom surface of the feature to at least partially fill the feature with the deposited material.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 15, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JOUNG JOO LEE, XIANMIN TANG, TZA-JING GUNG