Patents by Inventor Julien Frougier

Julien Frougier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10804398
    Abstract: A device including source-drain epitaxy contacts with a trench silicide (TS) liner wrapped around the source-drain contacts, and method of production thereof. Embodiments include a device having a gate structure formed over a substrate; source-drain epitaxy contacts including a trench silicide (TS) liner covering the source-drain epitaxy contacts; TS contacts formed on the TS liner over the source-drain epitaxy contacts; and a dielectric pillar disposed in a TS cut between the source-drain epitaxy contacts. The TS liner wraps around the source-drain epitaxy contacts, including bottom negatively tapered surfaces of the source-drain epitaxy contacts.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: October 13, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Julien Frougier, Ruilong Xie
  • Publication number: 20200321434
    Abstract: A method of fabricating a semiconductor device is described. The method includes forming a stack of sacrificial layers on a substrate. A U-shaped trench is formed in the stack of the sacrificial layers. A first U-shaped channel layer is deposited in the U-shaped trench. A first U-shaped sacrificial layer is conformally formed covering the U-shaped channel layer. A second U-shaped channel layer is conformally deposited covering the first U-shaped sacrificial layer. A gate is formed around the first and the second U-shaped channel layers.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Inventors: Kangguo Cheng, Ruilong Xie, Julien Frougier, Chanro Park, TENKO YAMASHITA
  • Publication number: 20200312980
    Abstract: Embodiments of the present invention are directed to forming a reliable wrap-around contact (WAC) without using a source/drain sacrificial region. In a non-limiting embodiment of the invention, an isolation structure is formed over a substrate. A source or drain (S/D) region is formed over the substrate and between sidewalls of the isolation structure. A liner is formed over the S/D region and a sacrificial region is formed over the liner. The sacrificial region can be recessed below a surface of the isolation structure and an interlayer dielectric can be formed over the recessed surface of the sacrificial region. The sacrificial region can be replaced with a wrap-around contact.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Inventors: Julien Frougier, Kangguo Cheng, RUILONG XIE
  • Publication number: 20200312977
    Abstract: Embodiments of the invention are directed to a method of fabricating a field effect transistor device, wherein the fabrication operations include forming a channel region over a substrate, forming a gate region over a top surface and along sidewalls of the channel region, and forming a source or drain (S/D) region over the substrate. A bottom encapsulated air-gap is formed over the substrate, and a first portion of the bottom encapsulated air-gap is positioned between the gate region and the S/D region. The first portion of the bottom encapsulated air-gap is further positioned below the top surface of the channel region.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Inventors: Nicolas Loubet, Kangguo Cheng, Wenyu Xu, Julien Frougier
  • Patent number: 10790376
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to contact structures and methods of manufacture. The structure includes: a plurality of gate structures comprising source and drain regions and sidewall spacers; contacts connecting to at least one gate structure of the plurality of gate structures; and at least one metallization feature connecting to the source and drain regions and extending over the sidewall spacers.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Chanro Park, Julien Frougier, Kangguo Cheng, Andre P. Labonte
  • Publication number: 20200303543
    Abstract: Embodiments of the present invention are directed to forming a wrap-around contact (WAC) for a vertical field effect transistor (VFET). In a non-limiting embodiment of the invention, a top spacer is formed on a surface of a gate. A sacrificial spacer is formed on the top spacer. A source/drain region is formed over the top spacer and between sidewalls of the sacrificial spacer. The sacrificial spacer can be replaced with a wrap-around contact. The source/drain region can include a first material, the sacrificial spacer can include a second material, and the second material can be selected such that the second material can be etched selective to the first material.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Inventors: Kangguo Cheng, Chanro Park, Julien Frougier, RUILONG XIE
  • Patent number: 10784171
    Abstract: A device is disclosed that includes a first transistor device of a first type and a second transistor device of a second type positioned vertically above the first transistor, wherein the first type and second type of transistors are opposite types. The device also includes a gate structure for the first transistor and the second transistor, wherein the gate structure comprises a first gate electrode for the first transistor and a second gate electrode for the second transistor and a gate stack spacer positioned vertically between the first gate electrode and the second gate electrode so as to electrically isolate the first gate electrode from the second gate electrode.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Julien Frougier, Ruilong Xie, Puneet Harischandra Suvarna
  • Publication number: 20200295017
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a multi-level ferroelectric memory cell and methods of manufacture. The structure includes: a first metallization feature; a tapered ferroelectric capacitor comprising a first electrode, a second electrode and ferroelectric material between the first electrode and the second electrode, the first electrode contacting the first metallization feature; and a second metallization feature contacting the second electrode.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 17, 2020
    Inventors: Julien FROUGIER, Ruilong XIE
  • Publication number: 20200286900
    Abstract: Structures and static random access memory bit cells including complementary field effect transistors and methods of forming such structures and bit cells. A first complementary field-effect transistor has a first storage nanosheet transistor, a second storage nanosheet transistor stacked over the first storage nanosheet transistor, and a first gate electrode shared by the first storage nanosheet transistor and the second storage nanosheet transistor. A second complementary field-effect transistor has a third storage nanosheet transistor, a fourth storage nanosheet transistor stacked over the third storage nanosheet transistor, and a second gate electrode shared by the third storage nanosheet transistor and the fourth storage nanosheet transistor. The first gate electrode and the second gate electrode are arranged in a spaced arrangement along a longitudinal axis. All gate electrodes of the SRAM bitcell may be arranged in a 1CPP layout.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Inventors: Randy W. Mann, Bipul C. Paul, Julien Frougier, Ruilong Xie
  • Publication number: 20200287046
    Abstract: Embodiments of the invention are directed to methods of fabricating devices on a substrate. A non-limiting example of the method includes performing memory fabrication operations to form a non-volatile memory device in a first region of the substrate, wherein the memory fabrication operations include forming a first region of a nanosheet stack over the first region of the substrate. The first region of the nanosheet stack includes nanosheet layers of a first type of semiconductor material alternating with nanosheet layers of a second type of semiconductor material. A first portion of the first region of the nanosheet stack is replaced with a control gate of the non-volatile memory device, and a charge trapping region of the non-volatile memory device is provided under the control gate.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 10, 2020
    Inventors: Julien Frougier, Ruilong Xie, Kangguo Cheng, Juntao Li
  • Patent number: 10770566
    Abstract: A device is disclosed that includes an active layer, a gate structure positioned above a channel region of the active layer and a first sidewall spacer positioned adjacent the gate structure. The device also includes a gate cap layer positioned above the gate structure and an upper spacer that contacts sidewall surfaces of the gate cap layer, a portion of an upper surface of the gate structure and an inner surface of the first sidewall spacer.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 8, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Julien Frougier, Ruilong Xie, Chanro Park, Kangguo Cheng
  • Publication number: 20200279858
    Abstract: Embodiments of the present invention are directed to techniques for integrating a split gate metal-oxide-nitride-oxide-semiconductor (SG-MONOS) memory with a vertical field effect transistor (VFET). In a non-limiting embodiment of the invention, a vertical SG-MONOS memory device is formed on a first region of a substrate. The SG-MONOS memory device can include a charge storage stack, a memory gate on the charge storage stack, and a control gate vertically stacked over the charge storage stack and the memory gate. A VFET is formed on a second region of the substrate. The VFET can include a logic gate.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: RUILONG XIE, JULIEN FROUGIER, KANGGUO CHENG
  • Publication number: 20200272880
    Abstract: Embodiments of the present disclosure provide a neuromorphic circuit structure including: a first vertically-extending neural node configured to generate an output signal based on at least one input to the first vertically-extending neural node; an interconnect stack adjacent the vertically-extending neural node, the interconnect stack including a first conducting line coupled to the first vertically-extending neural node and configured to receive the output signal, a second conducting line vertically separated from the first conducting line, and a memory via vertically coupling the first conducting line to the second conducting line; and a second vertically-extending neural node adjacent the interconnect stack, and coupled to the second conducting line for receiving the output signal from the first vertically-extending neural node.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 27, 2020
    Inventors: Edward J. Nowak, Siva P. Adusumilli, Ruilong Xie, Julien Frougier
  • Publication number: 20200274000
    Abstract: Embodiments of the present invention are directed to techniques for providing an novel field effect transistor (FET) architecture that includes a center fin region and one or more vertically stacked nanosheets. In a non-limiting embodiment of the invention, a non-planar channel region is formed having a first semiconductor layer, a second semiconductor layer, and a fin-shaped bridge layer between the first semiconductor layer and the second semiconductor layer. Forming the non-planar channel region can include forming a nanosheet stack over a substrate, forming a trench by removing a portion of the nanosheet stack, and forming a third semiconductor layer in the trench. Outer surfaces of the first semiconductor layer, the second semiconductor layer, and the fin-shaped bridge region define an effective channel width of the non-planar channel region.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: RUILONG XIE, Julien Frougier, CHANRO PARK, Edward Nowak, Yi Qi, Kangguo Cheng, NICOLAS LOUBET
  • Publication number: 20200273979
    Abstract: Embodiments of the present invention are directed to techniques for providing an novel field effect transistor (FET) architecture that includes a center fin region and one or more vertically stacked nanosheets. In a non-limiting embodiment of the invention, a nanosheet stack is formed over a substrate. The nanosheet stack can include one or more first semiconductor layers and one or more first sacrificial layers. A trench is formed by removing a portion of the one or more first semiconductor layers and the one or more first sacrificial layers. The trench exposes a surface of a bottommost sacrificial layer of the one or more first sacrificial layers. The trench can be filled with one or more second semiconductor layers and one or more second sacrificial layers such that each of the one or more second semiconductor layers is in contact with a sidewall of one of the one or more first semiconductor layers.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: RUILONG XIE, Julien Frougier, CHANRO PARK, Edward Nowak, Yi Qi, Kangguo Cheng, NICOLAS LOUBET
  • Patent number: 10756203
    Abstract: Fabricating a feedback field effect transistor includes receiving a semiconductor structure including a substrate, a first source/drain disposed on the substrate, a fin disposed on the first source/drain, and a hard mask disposed on a top surface of the fin. A bottom spacer is formed on a portion of the first source/drain. A first gate is formed upon the bottom spacer. A sacrificial spacer is formed upon the first gate, a gate spacer is formed on the first gate from the sacrificial spacer, and a second gate is formed on the gate spacer. The gate spacer is disposed between the first gate and the second gate. A top spacer is formed around portions of the second gate and hard mask, a recess is formed in the top spacer and hard mask, and a second source/drain is formed in the recess.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Julien Frougier, Ruilong Xie, Steven Bentley, Kangguo Cheng, Nicolas Loubet, Pietro Montanini
  • Patent number: 10741639
    Abstract: A technique relates to a semiconductor device. A stack is formed over a bottom sacrificial layer, the bottom sacrificial layer being on a substrate. At least a portion of the bottom sacrificial layer is removed so as to create openings. Inner spacers are formed in the openings adjacent to the bottom sacrificial layer. The bottom sacrificial layer is removed so as to create a void. An isolation layer formed on the inner spacers so as to form an air gap, the isolation layer and the air gap being positioned between the stack and the substrate.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Loubet, Robin Hsin Kuo Chao, Julien Frougier, Ruilong Xie
  • Patent number: 10741675
    Abstract: Fabricating a feedback field effect transistor includes receiving a semiconductor structure including a substrate, a first source/drain disposed on the substrate, a fin disposed on the first source/drain, and a hard mask disposed on a top surface of the fin. A bottom spacer is formed on a portion of the first source/drain. A first gate is formed upon the bottom spacer. A sacrificial spacer is formed upon the first gate, a gate spacer is formed on the first gate from the sacrificial spacer, and a second gate is formed on the gate spacer. The gate spacer is disposed between the first gate and the second gate. A top spacer is formed around portions of the second gate and hard mask, a recess is formed in the top spacer and hard mask, and a second source/drain is formed in the recess.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Julien Frougier, Ruilong Xie, Steven Bentley, Kangguo Cheng, Nicolas Loubet, Pietro Montanini
  • Patent number: 10734525
    Abstract: The disclosure relates to gate-all-around (GAA) transistors with a spacer support, and related methods. A GAA transistor according to embodiments of the disclosure includes: at least one semiconductor channel structure extending between a source terminal and a drain terminal; a spacer support having a first portion thereof positioned underneath and a second portion thereof positioned alongside a first portion of the at least one semiconductor channel structure; and a gate metal surrounding a second portion of the at least one semiconductor channel structure between the source and drain terminals; wherein the spacer support is positioned between the gate metal and the source or drain terminal.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: August 4, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Julien Frougier, Christopher M. Prindle, Nigel G. Cave
  • Patent number: 10714567
    Abstract: Structures for a field-effect transistor and methods of forming a structure for a field-effect transistor. A sacrificial layer is epitaxially grown on a bulk semiconductor substrate, a plurality of epitaxial semiconductor layers are epitaxially grown over the sacrificial layer, and the sacrificial layer and the plurality of epitaxial semiconductor layers are patterned to form a fin. A first portion of the first sacrificial layer is removed to form a first cavity arranged between the plurality of epitaxial semiconductor layers and the bulk semiconductor substrate, and a first dielectric material is deposited in the first cavity. A second portion of the first sacrificial layer, which is located adjacent to the first dielectric material in the first cavity, is removed to form a second cavity between the first fin and the bulk semiconductor substrate. A second dielectric material is deposited in the second cavity.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 14, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Julien Frougier, Ruilong Xie