Patents by Inventor Jyun-De Wu

Jyun-De Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160099380
    Abstract: An epitaxial structure including an epitaxial substrate, a first buffer layer, a first pattern mask layer, a second buffer layer and a second pattern mask layer. The first buffer layer is disposed on the epitaxial substrate. The first pattern mask layer is disposed on the first buffer layer. The second buffer layer is disposed on the first pattern mask layer and a part of the first buffer layer. The second pattern mask layer is disposed on the second buffer layer. A projection of the first pattern mask layer projected on the first buffer layer and a projection of the second pattern mask layer projected on the first buffer layer cover at least 70% of the total area of the first buffer layer.
    Type: Application
    Filed: July 26, 2015
    Publication date: April 7, 2016
    Inventors: Yen-Lin Lai, Jyun-De Wu
  • Publication number: 20160099381
    Abstract: An epitaxy base including a substrate and a nucleating layer disposed on the substrate. The nucleating layer is an AlN layer with a single crystal structure. A diffraction pattern of the nucleating layer includes a plurality of dot patterns. Each of the dot patterns is substantially circular, and a ratio between lengths of any two diameters perpendicular to each other on each of the dot patterns ranges from approximately 0.9 to approximately 1.1. A semiconductor light emitting device, a manufacturing method of the epitaxy base, and a manufacturing method of the light emitting semiconductor device are further provided.
    Type: Application
    Filed: July 28, 2015
    Publication date: April 7, 2016
    Inventors: Yen-Lin Lai, Jyun-De Wu
  • Publication number: 20160087154
    Abstract: A nitride semiconductor structure including a substrate, a first type nitride semiconductor layer disposed on the substrate, an active layer disposed between the substrate and the first type nitride semiconductor layer and a second type nitride semiconductor layer disposed between the substrate and the active layer is provided. The active layer includes a first multiple quantum well structure including a plurality of first quantum well layers and a plurality of first barrier layers staggered with each other, and a second multiple quantum well structure including a plurality of second quantum well layers and a plurality of second barrier layers staggered with each other. A second type dopant is doped into at least one of the second barrier layers, and a concentration of the second dopant in the second barrier layer is higher than that of the second dopant in the second type nitride semiconductor layer.
    Type: Application
    Filed: July 27, 2015
    Publication date: March 24, 2016
    Inventors: Yen-Lin Lai, Jyun-De Wu
  • Publication number: 20160035934
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Application
    Filed: September 11, 2015
    Publication date: February 4, 2016
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Patent number: 9147800
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 29, 2015
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Publication number: 20150263226
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Patent number: 9048364
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1?xN (0<x<1) while the stress control layer is made from AlxInyGa1?x?yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: June 2, 2015
    Assignee: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Publication number: 20150048396
    Abstract: A light emitting structure includes an N-type semiconductor layer, a P-type semiconductor layer, a light emitting layer, and a stress regulation layer. The light emitting layer is formed between the N-type semiconductor layer and the P-type semiconductor layer. The stress regulation layer is formed between the N-type semiconductor layer and the light emitting layer. The stress regulation layer comprises a plurality of pairs of AlxIn(1-x)GaN and AlyIn(1-y)GaN layers stacked with each other, wherein 0<x<1, 0?y<1, thickness of the stress regulation layer is between 50 nanometer and 500 nanometer, and x?y.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: Jyun-De Wu, Shen-Jie Wang
  • Patent number: 8872157
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a light emitting layer disposed between a n-type semiconductor layer and a p-type semiconductor layer, and a hole supply layer disposed between the light emitting layer and the p-type semiconductor layer. The hole supply layer is made from material InxGa1-xN (0<x<1) and is doped with a Group IV-A element at a concentration ranging from 1017 to 1020 cm?3. By being doped with the Group IV-A element, the concentration of holes is increased and inactivation caused by Mg—H bonds is reduced. Thus Mg is activated as acceptors and the light emitting efficiency is further increased.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 28, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Jyun-De Wu, Yu-Chu Li
  • Patent number: 8766293
    Abstract: A light-emitting device includes a first cladding layer, a light-emitting layer, a second cladding layer, an epitaxial structure including an indium-containing oxide, and an electrode unit for supplying external electricity, The electrode unit includes a first electrode disposed to be electrically connected to the first cladding layer, and a second electrode disposed above the epitaxial structure to be electrically connected to the second cladding layer through the epitaxial structure such that the external electricity is permitted to be transmitted to the light-emitting layer through the first and second electrodes. A method for manufacturing the light-emitting device is also disclosed.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Jyun-De Wu, Yu-Chu Li
  • Patent number: 8766307
    Abstract: A light emitting diode device includes an epitaxial substrate, at least one passivation structure, at least one void, a semiconductor layer, a first type doping semiconductor layer, a light-emitting layer and a second type doping semiconductor layer. The passivation structure is disposed on the epitaxial substrate and has an outer surface. The void is located at the passivation structure and at least covering 50% of the outer surface of the passivation structure. The semiconductor layer is disposed on the epitaxial substrate and encapsulating the passivation structure and the void. The first type doping semiconductor layer is disposed on the semiconductor layer. The light-emitting layer is disposed on the first type doping semiconductor layer. The second type doping semiconductor layer is disposed on the light emitting layer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: July 1, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Shen-Jie Wang, Yu-Chu Li, Jyun-De Wu, Ching-Liang Lin, Kuan-Yung Liao
  • Publication number: 20140138619
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Application
    Filed: August 9, 2013
    Publication date: May 22, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: YEN-LIN LAI, JYUN-DE WU, YU-CHU LI
  • Publication number: 20140138616
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1?xN (0<x<1) while the stress control layer is made from AlxInyGa1?x?yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Application
    Filed: August 9, 2013
    Publication date: May 22, 2014
    Applicant: Genesis Photonics Inc.
    Inventors: CHI-FENG HUANG, CHING-LIANG LIN, SHEN-JIE WANG, JYUN-DE WU, YU-CHU LI, CHUN-CHIEH LEE
  • Publication number: 20140138618
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a light emitting layer disposed between a n-type semiconductor layer and a p-type semiconductor layer, and a hole supply layer disposed between the light emitting layer and the p-type semiconductor layer. The hole supply layer is made from material InxGa1-xN (0<x<1) and is doped with a Group IV-A element at a concentration ranging from 1017 to 10 cm?3. By being doped with the Group IV-A element, the concentration of holes is increased and inactivation caused by Mg—H bonds is reduced. Thus Mg is activated as acceptors and the light emitting efficiency is further increased.
    Type: Application
    Filed: August 9, 2013
    Publication date: May 22, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: JYUN-DE WU, YU-CHU LI
  • Publication number: 20130277697
    Abstract: A light emitting diode device includes an epitaxial substrate, at least one passivation structure, at least one void, a semiconductor layer, a first type doping semiconductor layer, a light-emitting layer and a second type doping semiconductor layer. The passivation structure is disposed on the epitaxial substrate and has an outer surface. The void is located at the passivation structure and at least covering 50% of the outer surface of the passivation structure. The semiconductor layer is disposed on the epitaxial substrate and encapsulating the passivation structure and the void. The first type doping semiconductor layer is disposed on the semiconductor layer. The light-emitting layer is disposed on the first type doping semiconductor layer. The second type doping semiconductor layer is disposed on the light emitting layer.
    Type: Application
    Filed: February 27, 2013
    Publication date: October 24, 2013
    Applicant: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Shen-Jie Wang, Yu-Chu Li, Jyun-De Wu, Ching-Liang Lin, Kuan-Yung Liao
  • Publication number: 20130037796
    Abstract: A light-emitting device includes a first cladding layer, a light-emitting layer, a second cladding layer, an epitaxial structure including an indium-containing oxide, and an electrode unit for supplying external electricity, The electrode unit includes a first electrode disposed to be electrically connected to the first cladding layer, and a second electrode disposed above the epitaxial structure to be electrically connected to the second cladding layer through the epitaxial structure such that the external electricity is permitted to be transmitted to the light-emitting layer through the first and second electrodes. A method for manufacturing the light-emitting device is also disclosed.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Applicant: GENESIS PHOTONICS INC.
    Inventors: Jyun-De Wu, Yu-Chu Li