Patents by Inventor Karsten Wieczorek

Karsten Wieczorek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7217657
    Abstract: A method is disclosed in which differing metal layers are sequentially deposited on silicon-containing regions so that the type and thickness of the metal layers may be adapted to specific characteristics of the underlying silicon-containing regions. Subsequently, a heat treatment is performed to convert the metals into metal silicides so as to improve the electrical conductivity of the silicon-containing regions. In this way, silicide portions may be formed that are individually adapted to specific silicon-containing regions so that device performance of individual semiconductor elements or the overall performance of a plurality of semiconductor elements may be significantly improved. Moreover, a semiconductor device is disclosed comprising at least two silicon-containing regions having formed therein differing silicide portions, wherein at least one silicide portion comprises a noble metal.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: May 15, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Rolf Stephan
  • Patent number: 7192881
    Abstract: By heat treating a silicon dioxide liner prior to patterning a silicon nitride spacer layer, the etch selectivity of the silicon dioxide with respect to the silicon nitride is increased, thereby reducing or eliminating the problem of pitting through the silicon dioxide layer. This allows further scaling of the devices, wherein an extremely thin silicon dioxide liner is required to obtain an accurate lateral patterning of the dopant profile in the drain and source regions.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: March 20, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thorsten Kammler, Karsten Wieczorek, Christoph Schwan
  • Patent number: 7148145
    Abstract: Polysilicon lines are formed, featuring an upper portion extending beyond the lower portion that defines the required CD. Accordingly, metal silicide layers of increased dimensions can be formed on the upper portion of the polysilicon lines so that the resulting gate structures exhibit a very low final sheet resistance. Moreover, in situ sidewall spacers are realized during the process for forming the polysilicon lines and without additional steps and/or costs.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: December 12, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Rolf Stephan
  • Publication number: 20060244069
    Abstract: By locally adapting the blocking capability of gate insulation layers for N-channel transistors and P-channel transistors, the reliability and threshold stability of the P-channel transistor may be enhanced, while nevertheless electron mobility of the N-channel transistor may be kept at a high level. This may be accomplished by incorporating a different amount of a dielectric dopant into respective gate insulation layer portions.
    Type: Application
    Filed: November 21, 2005
    Publication date: November 2, 2006
    Inventors: Karsten Wieczorek, Michael Raab, Karla Romero
  • Patent number: 7122410
    Abstract: By maintaining the gate electrode covered during the process flow for forming metal silicide regions in the drain and source of a field effect transistor, an appropriate metal silicide may be formed on the gate electrode which meets the requirement for aggressive gate length scaling. Preferably, a nickel silicide is formed on the gate electrode, whereas the drain and source regions receive the well-established cobalt disilicide. Additionally, the gate electrode dopant profile is effectively decoupled from the drain and source dopant profile.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 17, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thorsten Kammler, Karsten Wieczorek, Matthias Schaller
  • Patent number: 7115464
    Abstract: In a method for fabricating a semiconductor device different types of a metal-semiconductor compound are formed on or in at least two different conductive semiconductor regions so that for each semiconductor region the metal-semiconductor compound region may be formed to obtain an optimum overall performance of the semiconductor device. On one of the two semiconductor regions, the metal-semiconductor compound is formed of at least two different metal layers, whereas the metal-semiconductor compound in or on the other semiconductor region is formed from a single metal layer.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: October 3, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Rolf Stephan, Manfred Horstmann, Karsten Wieczorek
  • Publication number: 20060148163
    Abstract: The present invention describes a method for forming different types of gate insulation layers, wherein the formation of one type of gate insulation layer is highly decoupled from the formation of the other type of gate insulation layer. Thus, in some embodiments, critical oxidation processes may finely be tuned on an individual basis. This is accomplished by providing a mask layer that may substantially prevent any impact on an initially made insulation layer during a subsequent manufacturing process of a second gate insulation layer.
    Type: Application
    Filed: August 4, 2005
    Publication date: July 6, 2006
    Inventors: Karsten Wieczorek, Thorsten Kammler, Carsten Reichel
  • Patent number: 7067410
    Abstract: The present invention provides a technique for forming a metal silicide, such as a cobalt disilicide, even at extremely scaled device dimensions without unduly degrading the film integrity of the metal silicide. To this end, an ion implantation may be performed, advantageously with silicon, prior to a final anneal cycle, thereby correspondingly modifying the grain structure of the precursor of the metal silicide.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: June 27, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Thorsten Kammler, Manfred Horstmann
  • Patent number: 7060549
    Abstract: SRAM devices utilizing tensile-stressed strain films and methods for fabricating such SRAM devices are provided. An SRAM device, in one embodiment, comprises an NFET and a PFET that are electrically coupled and physically isolated. The PFET has a gate region, a source region, and a drain region. A tensile-strained stress film is disposed on the gate region and at least a portion of the source region and the drain region of the PFET. A method for fabricating a cell of an SRAM device comprises fabricating an NFET and a PFET overlying a substrate. The PFET and the NFET are electically coupled and are physically isolated. A tensile-strained stress film is deposited on the gate region and at least a portion of the source region and the drain region of the PFET.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 13, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark Craig, Karsten Wieczorek, Manfred Horstmann
  • Patent number: 7041583
    Abstract: A method for improving the etch behavior of disposable features in the fabrication of a semiconductor device is disclosed. The semiconductor device comprises a bottom anti-reflective coating layer and/or a disposable sidewall spacer which are to be removed in a subsequent etch removal process. The bottom anti-reflective coating layer and/or the disposable sidewall spacer are irradiated by heavy inert ions to alter the structure of the irradiated features and to increase concurrently the etch rate of the employed materials, for example, silicon nitride or silicon reacted nitride.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: May 9, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Rolf Stephan
  • Publication number: 20060094183
    Abstract: By predoping of a layer of deposited semiconductor gate material by incorporating dopants during the deposition process, a high uniformity of the dopant distribution may be achieved in the gate electrodes of CMOS devices subsequently formed in the layer of gate material. The improved uniformity of the dopant distribution results in reduced gate depletion and reduced threshold voltage shift in the transistors of the CMOS devices.
    Type: Application
    Filed: June 16, 2005
    Publication date: May 4, 2006
    Inventors: Karsten Wieczorek, Manfred Horstmann, Thomas Feudel
  • Publication number: 20060046400
    Abstract: A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.
    Type: Application
    Filed: April 26, 2005
    Publication date: March 2, 2006
    Inventors: Gert Burbach, Rolf Stephan, Karsten Wieczorek, Manfred Horstmann
  • Patent number: 6995027
    Abstract: A test structure for assessing the reliability of a dielectric of a circuit element in an integrated circuit includes a plurality of test circuit elements and a plurality of contact pads, wherein at least some of the test circuit elements share one or more of the contact pads. In this way, a failure event can be detected with a reduced number of contact pads, thereby significantly reducing the area of floor space occupied by the test structure.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: February 7, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Rolf Geilenkeuser, Jörg-Oliver Weidner
  • Publication number: 20060022197
    Abstract: By providing a test structure including a plurality of test pads, the anisotropic behavior of stress and strain influenced electrical characteristics, such as the electron mobility, may be determined in a highly efficient manner. Moreover, the test pads may enable the detection of stress and strain induced modifications with a spatial resolution in the order of magnitude of individual circuit elements.
    Type: Application
    Filed: April 6, 2005
    Publication date: February 2, 2006
    Inventors: Frank Wirbeleit, Gert Burbach, Karsten Wieczorek, Manfred Horstmann
  • Patent number: 6933620
    Abstract: An insulated gate semiconductor device (100) having reduced gate resistance and a method for manufacturing the semiconductor device (100). A gate structure (112) is formed on a major surface (104) of a semiconductor substrate (102). Successive nitride spacers (118, 128) are formed adjacent the sidewalls of the gate structure (112). The nitride spacers (118, 128) are etched and recessed using a single etch to expose the upper portions (115A, 117A) of the gate structure (112). Source (132) and drain (134) regions are formed in the semiconductor substrate (102). Silicide regions (140, 142, 144) are formed on the top surface (109) and the exposed upper portions (115A, 117A) of the gate structure (112) and the source region (132) and the drain region (134). Electrodes (150, 152, 154) are formed in contact with the silicide (140, 142, 144) of the respective gate structure (112), source region (132), and the drain region (134).
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: August 23, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Scott Lunning, Karsten Wieczorek, Thorsten Kammler
  • Publication number: 20050151202
    Abstract: An epitaxially grown channel layer is provided on a well structure after ion implantation steps and heat treatment steps are performed to establish a required dopant profile in the well structure. The channel layer may be undoped or slightly doped, as required, so that the finally obtained dopant concentration in the channel layer is significantly reduced compared to a conventional device to thereby provide a retrograde dopant profile in a channel region of a field effect transistor. Additionally, a barrier diffusion layer may be provided between the well structure and the channel layer to reduce up-diffusion during any heat treatments carried out after the formation of the channel layer. The final dopant profile in the channel region may be adjusted by the thickness of the channel layer, the thickness and the composition of the diffusion barrier layer and any additional implantation steps to introduce dopant atoms in the channel layer.
    Type: Application
    Filed: March 4, 2005
    Publication date: July 14, 2005
    Inventors: Karsten Wieczorek, Manfred Horstmann, Rolf Stephan
  • Patent number: 6911404
    Abstract: A field effect transistor comprises a gate insulation layer including an anisotropic dielectric. The orientation is selected such that a first permittivity parallel to the gate insulation layer is significantly less than a second permittivity perpendicular to the gate insulation layer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 28, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Christian Radehaus
  • Publication number: 20050118769
    Abstract: By heat treating a silicon dioxide liner prior to patterning a silicon nitride spacer layer, the etch selectivity of the silicon dioxide with respect to the silicon nitride is increased, thereby reducing or eliminating the problem of pitting through the silicon dioxide layer. This allows further scaling of the devices, wherein an extremely thin silicon dioxide liner is required to obtain an accurate lateral patterning of the dopant profile in the drain and source regions.
    Type: Application
    Filed: November 12, 2004
    Publication date: June 2, 2005
    Inventors: Thorsten Kammler, Karsten Wieczorek, Christoph Schwan
  • Patent number: 6900111
    Abstract: A method for forming a reliable and ultra-thin oxide layer, such as a gate oxide layer of an MOS transistor, comprises an annealing step immediately performed prior to oxidizing a substrate. The annealing step is performed in an inert gas ambient to avoid oxidation of the semiconductor surface prior to achieving a required low oxidizing temperature. Preferably, the annealing step and the oxidizing step are carried out as an in situ process, thereby minimizing the thermal budget of the overall process.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: May 31, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Stephan Krügel, Falk Graetsch
  • Publication number: 20050098818
    Abstract: High-k dielectric spacer elements on the gate electrode of a field effects transistor in combination with an extension region that is formed by dopant diffusion from the high-k spacer elements into the underlying semiconductor region provides for an increased charge carrier density in the extension region. In this way, the limitation of the charge carrier density to approximately the solid solubility of dopants in the extension region may be overcome, thereby allowing extremely shallow extension regions without unduly compromising the transistor performance.
    Type: Application
    Filed: December 17, 2004
    Publication date: May 12, 2005
    Inventors: Thomas Feudel, Manfred Horstmann, Karsten Wieczorek, Stephan Kruegel