Patents by Inventor Kazuhiro Okada

Kazuhiro Okada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6512364
    Abstract: A sensor comprises a semiconductor pellet (10) including a working portion (11) adapted to undergo action of a force, a fixed portion (13) fixed on the sensor body, and a flexible portion (13) having flexibility formed therebetween, a working body (20) for transmitting an exterted force to the working portion, and detector means (60-63) for transforming a mechanical deformation produced in the semiconductor pellet to an electric signal to thereby detect a force exerted on the working body as an electric signal. A signal processing circuit is applied to the sensor. This. circuit uses analog multipliers (101-109) and analog adders/subtracters (111-113), and has a function to cancel interference produced in different directions. Within the sensor, two portions (E3, E4-E8) located at positions opposite to each other and producing a displacement therebetween by action of a force are determined. By exerting a coulomb force between both the portions, the test of the sensor is carried out.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: January 28, 2003
    Inventor: Kazuhiro Okada
  • Publication number: 20030015043
    Abstract: An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
    Type: Application
    Filed: September 19, 2002
    Publication date: January 23, 2003
    Inventor: Kazuhiro Okada
  • Patent number: 6477903
    Abstract: An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: November 12, 2002
    Inventor: Kazuhiro Okada
  • Patent number: 6474133
    Abstract: A sensor comprises a semiconductor pellet (10) including a working portion (11) adapted to undergo action of a force, a fixed portion (13) fixed on the sensor body, and a flexible portion (13) having flexibility formed therebetween, a working body (20) for transmitting an exerted force to the working portion, and detector means (60-63) for transforming a mechanical deformation produced in the semiconductor pellet to an electric signal to thereby detect a force exerted on the working body as an electric signal. A signal processing circuit is applied to the sensor. This circuit uses analog multipliers (101-109) and analog adders/subtractors (111-113), and has a function to cancel interference produced in different directions. Within the sensor, two portions (E3, E4-E8) located at positions opposite to each other and producing a displacement therebetween by action of a force are determined. By exerting a coulomb force between both the portions, the test of the sensor is carried out.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: November 5, 2002
    Inventor: Kazuhiro Okada
  • Patent number: 6472070
    Abstract: The present invention is a fire-resistant paint containing an epoxy resin, a hardener, and an inorganic filler wherein {circle around (1)} for the total of 100 weight parts of the epoxy resin and the hardener, {circle around (2)} 200-500 weight parts of the inorganic filler, chosen from a group consisting of neutralized thermally expandable graphite, metal carbonate, and a hydrated inorganic compound is contained; {circle around (3)} for the inorganic filler, at least 15-400 weight parts of neutralized thermally expandable graphite is contained; and {circle around (4)} the viscosity of the fire-resistant paint is 1-1,000 ps as measured by a B-type viscometer. The fire-resistant paint of the present invention has particularly remarkable fire resistance, and can be used in a wide range of applications.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: October 29, 2002
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Hitomi Muraoka, Masaki Tono, Kazuhiro Okada
  • Patent number: 6378381
    Abstract: A bottom fixed layer 110, displacement layer 125, and top fixed layer 130 are fixed in a layered structure by way of intervening pedestals 145, 155, which serve as spacers between the layers. The bottom and top fixed layers 110, 130 are rigid dielectric substrates. The displacement layer 125 is a flexible conductive substrate. On the top of the bottom fixed layer 110 are formed an electrode E11 on the right, electrode E12 on the left, and a washer-shaped electrode E15 in the middle. On the bottom of the top fixed layer 130 are formed an electrode E21 on the right, electrode E22 on the left, and a washer-shaped electrode E25 in the middle. These electrodes and the displacement layer 125 together form capacitance elements C11 to C25. When acceleration acts on the working body 160, the displacement layer 125 is displaced and a change in capacitance occurs in various capacitance elements.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: April 30, 2002
    Assignee: Wacoh Corporation
    Inventors: Kazuhiro Okada, Hiromichi Itano, Nobumitsu Taniguchi
  • Patent number: 6373265
    Abstract: An electrostatic capacitive touch sensor including a substrate having a group of fixed electrodes formed thereon; and a movable electrode plate that is integrally molded by using rubber or resin having an elastic property as a whole and that has at least a face which opposes the group of fixed electrodes and is made of a conductive rubber or a conductive resin. The group of fixed electrodes and the movable electrode plate form a plurality of variable electrostatic capacitive sections, and in response to the magnitude and the direction of a force applied onto the movable electrode plate, the electrostatic capacitances of the respective variable electrostatic capacitive sections are allowed to change.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: April 16, 2002
    Assignees: Nitta Corporation, Wacoh Corporation
    Inventors: Hideo Morimoto, Kazuhiro Okada
  • Publication number: 20020040602
    Abstract: An angular velocity sensor for detecting an angular velocity component includes an oscillator having mass, a sensor casing for accommodating the oscillator therewithin, a flexible member for connecting the oscillator to the sensor casing so that the oscillator can be moved with respect to the sensor casing, and capacitance elements including a first electrode provided on a surface of the oscillator and a second electrode provided on a surface of a fixed member fixed to the sensor casing.
    Type: Application
    Filed: June 20, 2001
    Publication date: April 11, 2002
    Inventor: Kazuhiro Okada
  • Patent number: 6367326
    Abstract: A pivotal shaft (130) is provided along the Z-axis on a semiconductor substrate (100), whose upper surface extends along the XY-plane, to fit a rotor (200) consisting of dielectric material. The rotor is supported by the pivotal shaft so that it can be inclined and can be rotated. The peripheral portion of the rotor constitutes weight bodies (211, 212), and stators (111, 115) consisting of conductive material are disposed at the periphery thereof. When a.c. voltages of predetermined period are delivered to the stators, the rotor is rotated while floating in accordance with the principle of the induction motor. When angular velocity &ohgr;x about the X-axis is applied to the substrate 100, Corioli's force Fcz in the Z-axis positive direction is applied to the weight body (211) passing through the X-axis with velocity component in the Y-axis positive direction so that it becomes away from-the substrate.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: April 9, 2002
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Publication number: 20020014126
    Abstract: An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
    Type: Application
    Filed: July 17, 2001
    Publication date: February 7, 2002
    Inventor: Kazuhiro Okada
  • Patent number: 6314823
    Abstract: An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the, working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: November 13, 2001
    Inventor: Kazuhiro Okada
  • Patent number: 6282956
    Abstract: A flexible substrate (110) having flexibility and a fixed substrate (120) disposed so as to oppose it are supported at their peripheral portions by a sensor casing (140). An oscillator (130) is fixed on the lower surface of the flexible substrate. Five lower electrode layers (F1 to F5: F1 and F2 are disposed at front and back of F5) are formed on the upper surface of the flexible substrate. Five upper electrode layers (E1 to E5) are formed on the lower surface of the fixed substrate so as to oppose the lower electrodes. In the case of detecting an angular velocity &ohgr; x about the X-axis, an a.c. voltage is applied across a predetermined pair of opposite electrode layers (E5, F5) to allow the oscillator to undergo oscillation Uz in the Z-axis direction. Thus, a Coriolis force Fy proportional to the angular velocity &ohgr;x is applied to the oscillator in the Y-axis. By this Coriolis force Fy, the oscillator is caused to undergo displacement in the Y-axis direction.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: September 4, 2001
    Inventor: Kazuhiro Okada
  • Publication number: 20010011994
    Abstract: A capacitance type sensor includes a substrate, a group of electrodes fixed on an upper face of the substrate, a movable electrode plate having an electrode on its lower side and a gap between the group of fixed electrodes on the substrate and the electrode on the movable electrode plate. The gap is formed with a solder layer, a conductive elastomer layer, a conductive paint layer, or a conductive adhesive material layer provided on the substrate. The electrode on the movable electrode plate is made of conductive rubber plate or conductive elastomer plate.
    Type: Application
    Filed: February 7, 2001
    Publication date: August 9, 2001
    Inventors: Hideo Morimoto, Kazuhiro Okada
  • Patent number: 6269697
    Abstract: Upper electrodes (A1 to A5) are disposed on an upper surface of a disk-shaped piezoelectric element (10). On a lower surface of the piezoelectric element (10), an annular groove to surround origin O is formed at position corresponding to the upper electrodes (A1 to A5). At the portion where the annular groove is formed, the piezoelectric element (10) includes a flexible portion formed so as to have thin thickness. When the peripheral portion of the piezoelectric element (10) is fixed to the casing, the central portion positioned within the annular groove functions as a weight caused to hang down from the flexible portion. On the lower surface of the piezoelectric element (10), a lower electrode (B) is formed. When force is applied to the weight by acceleration, the flexible portion is bent. As a result, predetermined charges are produced in the upper electrodes (A1 to A5) with the lower electrode (B) being as a reference potential. Accordingly, applied acceleration can be detected. When a predetermined a.c.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: August 7, 2001
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Publication number: 20010003326
    Abstract: An intermediate displacement board (120) composed of a metal plate is arranged on a printed circuit board (110) having electrode patterns (E1-E7) and then a strain generative body (130) composed of silicon rubber is arranged on top thereof. Then, the arrangement is fixed to the printed circuit board (110) with attachments (140). Depressing a displacement portion (133) causes a connecting portion (132) to be deflected and an electrode (F0) to be brought into contact with the electrodes (E1, E2) to make them conductive, thereby allowing the pushbutton switch to be turned ON. Depressing further the displacement portion (133) causes an elastic deformation portion (134) to be elastically deformed and crushed and the intermediate displacement board (120) to be pushed downward. The capacitance of capacitors (C3-C7), which are constituted by the electrodes (E3-E7) and the intermediate displacement board (120), are varied according to the depression of the intermediate displacement board (120).
    Type: Application
    Filed: December 5, 2000
    Publication date: June 14, 2001
    Applicant: WACOH CORPORATION
    Inventors: Kazuhiro Okada, Nobumitsu Taniguchi, Hideo Morimoto
  • Patent number: 6206935
    Abstract: Described in the present invention is a hair dyeing method comprising treating the hair with a hair bleaching agent and then, without rinsing off the bleaching agent, with a direct hair dye. The present invention makes it possible to color the hair into a vivid color in a short time.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: March 27, 2001
    Assignee: Kao Corporation
    Inventors: Satoshi Onitsuka, Kazuhiro Okada, Hajime Miyabe
  • Patent number: 6205856
    Abstract: An angular velocity sensor for detecting angular velocity components about three axes with high response is provided. A weight body carries out a circular movement along a circular orbit within the XY-plane with the origin being as a center. The weight body is supported so that it can be moved with a predetermined degree of freedom within a sensor casing. A Coriolis force Fco exerted in the Z-axis direction to the weight body is detected when the weight body passes through the X-axis at the point Px and an angular velocity &ohgr;x about the X-axis is obtained based on the detected force. Further, a Coriolis force Fco exerted in the Z-axis direction to the weight body is detected when the weight body passes through the Y-axis at the point Py and an angular velocity &ohgr;y about the Y-axis is obtained based on the detected force.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: March 27, 2001
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 6185814
    Abstract: A sensor comprises a semiconductor pellet (10) including a working portion (11) adapted to undergo action of a force, a fixed portion (13) fixed on the sensor body, and a flexible portion (13) having flexibility formed therebetween, a working body (20) for transmitting an exterted force to the working portion, and detector means (60-63) for transforming a mechanical deformation produced in the semiconductor pellet to an electric signal to thereby detect a force exerted on the working body as an electric signal. A signal processing circuit is applied to the sensor. This circuit uses analog multipliers (101-109) and analog adders/subtracters (111-113), and has a function to cancel interference produced in different directions. Within the sensor, two portions (E3, E4-E8) located at positions opposite to each other and producing a displacement therebetween by action of a force are determined. By exerting a coulomb force between both the portions, the test of the sensor is carried out.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: February 13, 2001
    Inventor: Kazuhiro Okada
  • Patent number: 6158291
    Abstract: An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: December 12, 2000
    Inventor: Kazuhiro Okada
  • Patent number: 6159761
    Abstract: A first substrate of the three layer structure composed of a lower layer portion consisting of silicon, a middle layer portion consisting of SiO.sub.2 and an upper layer portion consisting of silicon is prepared. Impurity is doped into the lower layer portion so that it has conductivity. The lower surface of the lower layer portion is etched to form a diaphragm portion and a pedestal portion, and then a second substrate consisting of glass is joined to the portion therebelow. By the electrodes on the second substrate and the diaphragm portion, capacitance elements are formed. Grooves are dug by a dicing blade from the upper surface of the upper layer portion thereafter to downwardly dig the bottom portions of the grooves by etching until the upper surface of the lower layer portion is exposed. When the respective unit areas are cut off, there is obtained a structure in which a weight body is positioned at the central portion of the diaphragm portion and a pedestal is formed at the periphery thereof.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: December 12, 2000
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada