Patents by Inventor Kazuyuki Hayashi

Kazuyuki Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8641274
    Abstract: The polarization-maintaining fiber of the invention includes a core (1) made of germanium doped silica glass; a stress-applying part (3) made of boron doped silica glass; a cladding (2) made of pure silica glass; and a polyimide coating layer (4) with a thickness of 10 ?m or less that surrounds the outer periphery of the cladding (2).
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 4, 2014
    Assignee: Fujikura Ltd.
    Inventors: Koji Omichi, Yoshihiro Terada, Yutaka Endoh, Kazuyuki Hayashi, Katsuaki Izoe, Kazuhiko Aikawa, Manabu Kudoh
  • Publication number: 20130323630
    Abstract: To provide a substrate with a conductive film for an EUV mask blank, which has a conductive film having a low sheet resistance, excellent surface smoothness and excellent contact to an electrostatic chuck, and with which deformation of the substrate by the film stress in an EUV mask blank can be suppressed. A substrate with a conductive film to be used for producing a reflective mask blank for EUV lithography, comprising a conductive film formed on a substrate; wherein the conductive film has at least two layers of a layer (lower layer) formed on the substrate side and a layer (upper layer) formed on the lower layer; and the lower layer of the conductive film contains chromium (Cr), oxygen (O) and hydrogen (H), and the upper layer of the conductive film contains chromium (Cr), nitrogen (N) and hydrogen (H).
    Type: Application
    Filed: August 1, 2013
    Publication date: December 5, 2013
    Applicant: Asahi Glass Company, Limited
    Inventors: Kazunobu MAESHIGE, Kazuyuki HAYASHI, Toshiyuki UNO
  • Publication number: 20130316272
    Abstract: To provide an EUV mask blank with which the etching selectivity under etching conditions for absorber layer is sufficiently high, line edge roughness after pattern formation will not be large, and a pattern with high resolution can be obtained. A reflective mask blank for EUV lithography comprising a substrate, and a reflective layer for reflecting EUV light, an absorber layer for absorbing EUV light and a hard mask layer formed in this order on the substrate; wherein the absorber layer contains at least one of tantalum (Ta) and palladium (Pd) as the main component; the hard mask layer contains chromium (Cr), either one of nitrogen (N) and oxygen (O) and hydrogen (H); and in the hard mask layer, the total content of Cr and either one of N and O is from 85 to 99.9 at %, and the content of H is from 0.1 to 15 at %.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazuyuki Hayashi, Kazunobu Maeshige, Toshiyuki Uno
  • Publication number: 20130302001
    Abstract: A low-loss optical fiber over wide wavelength range includes a transmission loss of less than or equal to 40 dB/km in a whole wavelength range of 400-1400 nm, and being manufactured by drawing an optical fiber preform including a core composed of a silica glass having a hydroxyl-group concentration of less than or equal to 1 ppm and a cladding composed of a silica glass having a fluorine concentration of more than or equal to 3.2 wt %.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: FUJIKURA LTD.
    Inventors: Kazuhiko AIKAWA, Masahiro ASANO, Kazuyuki HAYASHI, Masami MIYACHI, Manabu KUDOH
  • Publication number: 20130288313
    Abstract: An L-amino acid is produced by culturing a microorganism belonging to the family Enterobacteriaceae having an L-amino acid-producing ability and modified so that glycerol dehydrogenase and dihydroxyacetone kinase activities are increased, in a medium containing glycerol as a carbon source to produce and accumulate an L-amino acid in the medium or cells, and collecting the L-amino acid from the medium or the cells.
    Type: Application
    Filed: July 10, 2013
    Publication date: October 31, 2013
    Inventors: Yuri Nagai, Kazuyuki Hayashi, Takuji Ueda, Yoshihiro Usuda, Kazuhiko Matsui
  • Patent number: 8557330
    Abstract: A manufacturing method of a soft magnetic material has a step of preparing a metal magnetic particle containing iron as the main component, and a step of forming an insulating film surrounding the surface of the metal magnetic particle. The step of forming the insulating film includes a step of mixing and stirring the metal magnetic particle, aluminum alkoxide, silicon alkoxide, and phosphoric acid.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: October 15, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Toda Kogyo Corp.
    Inventors: Toru Maeda, Naoto Igarashi, Haruhisa Toyoda, Seiji Ishitani, Hiroko Morii, Kazuyuki Hayashi
  • Patent number: 8512987
    Abstract: An L-amino acid is produced by culturing a microorganism belonging to the family Enterobacteriaceae having an L-amino acid-producing ability and modified so that glycerol dehydrogenase and dihydroxyacetone kinase activities are increased, in a medium containing glycerol as a carbon source to produce and accumulate an L-amino acid in the medium or cells, and collecting the L-amino acid from the medium or the cells.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 20, 2013
    Assignee: Ajinomoto Co., Inc.
    Inventors: Yuri Nagai, Kazuyuki Hayashi, Takuji Ueda, Yoshihiro Usuda, Kazuhiko Matsui
  • Publication number: 20120322000
    Abstract: To provide an EUV mask blank provided with a low reflective layer, which has excellent properties as an EUV mask blank. A reflective mask blank for EUV lithography comprising a substrate, and a reflective layer for reflecting EUV light, an absorber layer for absorbing EUV light and a low reflective layer to an inspection light (wavelength: 190 to 260 nm) for a mask pattern, formed in this order on the substrate, wherein the low reflective layer has a stacked structure having a first layer containing at least 95 at % in total of silicon (Si) and nitrogen (N), and a second layer containing at least 95 at % in total of tantalum (Ta), oxygen (O) and nitrogen (N) or a second layer containing at least 95 at % in total of tantalum (Ta) and nitrogen (N), stacked in this order from the absorber layer side.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Toshiyuki Uno, Kazuyuki Hayashi
  • Patent number: 8323725
    Abstract: A soft magnetic material is a soft magnetic material including a composite magnetic particle (30) having a metal magnetic particle (10) mainly composed of Fe and an insulating coating (20) covering metal magnetic particle (10), and insulating coating (20) contains an iron phosphate compound and an aluminum phosphate compound. The atomic ratio of Fe contained in a contact surface of insulating coating (20) in contact with metal magnetic particle (10) is larger than the atomic ratio of Fe contained in the surface of insulating coating (20). The atomic ratio of Al contained in the contact surface of insulating coating (20) in contact with metal magnetic particle (10) is smaller than the atomic ratio of Al contained in the surface of insulating coating (20). Thus, iron loss can be reduced.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: December 4, 2012
    Assignees: Sumitomo Electric Industries, Ltd., Toda Kogyo Corp.
    Inventors: Toru Maeda, Naoto Igarashi, Haruhisa Toyoda, Hirokazu Kugai, Kazuyuki Hayashi, Hiroko Morii, Seiji Ishitani
  • Patent number: 8303861
    Abstract: Colored composite microparticles comprising silica and an organic pigment in which the silica is enclosed in the organic pigment and contained in an amount of 0.001 to 9% by weight (calculated as Si) based on the weight of the composite particles. These microparticles have a high tinting strength and are excellent in dispersibility and light fastness.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 6, 2012
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Horie, Hiroko Morii, Hirofumi Nishikawa, Kazuyuki Hayashi
  • Patent number: 8288062
    Abstract: Provision of a reflective mask blank for EUV lithography having an absorber layer having optical constants suitable for reducing the film thickness. A reflective mask blank for EUV lithography comprising a substrate and a reflective layer for reflecting EUV light and an absorber layer for absorbing EUV light, that are formed in this order on the substrate; wherein the absorber layer contains at least one element selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti), and the absorber layer further contains palladium (Pd).
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: October 16, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuyuki Hayashi, Toshiyuki Uno
  • Patent number: 8227152
    Abstract: A reflective mask blank for EUV lithography having a low-reflective layer which has a low reflectivity with respect to wavelengths of EUV light and a mask pattern inspection light and which satisfies a predetermined reflectivity (405 nm: <40%, 600 to 650 nm: 30 to 50%, 800 to 900 nm: >50%, 1,000 to 1,200 nm: <90%) in a wavelength region (400 to 1,200 nm) required for the mask production process and the pattern transcription process. A reflective mask blank for EUV lithography having a reflective layer for reflecting EUV light, an absorbing layer for absorbing EUV light and a low-reflective layer with respect to a mask pattern inspection light (wavelength: 190 to 260 nm), which are formed in this order on a substrate, wherein the low-reflective layer contains at least tantalum (Ta), oxygen (O) and hydrogen (H), and the low-reflective layer has a Ta+O total content that is between 85 and 99.9 at % and an H content that is between 0.1 and 15 at %.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: July 24, 2012
    Assignee: Asahi Glass Company, Limited
    Inventor: Kazuyuki Hayashi
  • Publication number: 20120164320
    Abstract: A manufacturing method of a soft magnetic material has a step of preparing a metal magnetic particle containing iron as the main component, and a step of forming an insulating film surrounding the surface of the metal magnetic particle. The step of forming the insulating film includes a step of mixing and stirring the metal magnetic particle, aluminum alkoxide, silicon alkoxide, and phosphoric acid.
    Type: Application
    Filed: March 1, 2012
    Publication date: June 28, 2012
    Applicants: TODA KOGYO CORP., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Toru Maeda, Naoto Igarashi, Haruhisa Toyoda, Seiji Ishitani, Hiroko Morii, Kazuyuki Hayashi
  • Patent number: 8208775
    Abstract: A silica-based multi core optical fiber and a fabrication method for the same are provided, and include two or more cores of GeO2—SiO2 glass including an fluorine concentration not less than about 15 w % and a germanium concentration about 0.05 wt % to 2 wt %, in a core. A relative refractive index difference of a cladding and a core is not less than about 3%; and a ratio of a cladding diameter to a core diameter is about 1.02 to 3.0. A silica-based single core optical fiber is also provided, and includes a core having a germanium concentration not less than about 15 wt % and an fluorine concentration about 0.05 wt % to 2 wt %.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: June 26, 2012
    Assignee: Fujikura Ltd.
    Inventors: Manabu Kudou, Kazuyuki Hayashi, Takashi Tsumanuma
  • Patent number: 8208774
    Abstract: A silica-based multi core optical fiber and a fabrication method for the same are provided, and include two or more cores of GeO2—SiO2 glass including an fluorine concentration not less than about 15 w % and a germanium concentration about 0.05 wt % to 2 wt %, in a core. A relative refractive index difference of a cladding and a core is not less than about 3%; and a ratio of a cladding diameter to a core diameter is about 1.02 to 3.0. A silica-based single core optical fiber is also provided, and includes a core having a germanium concentration not less than about 15 wt % and an fluorine concentration about 0.05 wt % to 2 wt %.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 26, 2012
    Assignee: Fujikura Ltd.
    Inventors: Manabu Kudou, Kazuyuki Hayashi, Takashi Tsumanuma
  • Publication number: 20120107733
    Abstract: Provision of a reflective mask blank for EUV lithography having an absorber layer having optical constants suitable for reducing the film thickness. A reflective mask blank for EUV lithography comprising a substrate and a reflective layer for reflecting EUV light and an absorber layer for absorbing EUV light, that are formed in this order on the substrate; wherein the absorber layer contains at least one element selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti), and the absorber layer further contains palladium (Pd).
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Kazuyuki HAYASHI, Toshiyuki UNO
  • Patent number: 8168352
    Abstract: Provision of an EUV mask whereby an influence of reflected light from a region outside a mask pattern region is suppressed, and an EUV mask blank to be employed for production of such an EUV mask. A reflective mask for EUV lithography (EUVL), comprising a substrate having a mask pattern region and an EUV light-absorbing region located outside the mask pattern region; a reflective layer provided on the mask pattern region of the substrate for reflecting EUV light and having a portion on which an absorber layer is present and a portion on which no absorber layer is present; the portion on which an absorber layer is present and the portion on which no absorber layer is present being arranged so as to constitute a mask pattern; wherein the reflectivity of a surface of the absorber layer for EUV light is from 5 to 15% and the reflectivity of a surface of the EUV light-absorbing region for EUV light is at most 1%.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: May 1, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuyuki Hayashi, Toshiyuki Uno, Ken Ebihara
  • Patent number: 8153256
    Abstract: The soft magnetic material includes a plurality of composite magnetic particles having a metal magnetic particle and an insulating film surrounding the surface of the metal magnetic particle. The metal magnetic particle contains iron as the main component. The insulating film contains aluminum, silicon, phosphorus, and oxygen. The insulating film satisfies the relationship 0.4?MAl/(MAl+MSi)?0.9 and the relationship of 0.25?(MAl+MSi)/MP?1.0 in the case that molar amount of aluminum contained in the insulating film is represented by MAl, the sum of the molar amount of aluminum contained in the insulating film and the molar amount of silicon contained in the insulating film is represented by (MAl+MSi), and the molar amount of phosphorus contained in the insulating film is represented by MP.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: April 10, 2012
    Assignees: Sumitomo Electric Industries, Ltd., Toda Kogyo Corp.
    Inventors: Toru Maeda, Naoto Igarashi, Haruhisa Toyoda, Seiji Ishitani, Hiroko Morii, Kazuyuki Hayashi
  • Patent number: 8137872
    Abstract: To provide a reflective mask blank for EUV lithography having a low reflective layer having a low reflectance in the wavelength region of EUV light and an inspection light for a mask pattern, particularly having low reflection properties in the entire wavelength region (190 to 260 nm) of an inspection light for a mask pattern, and having a high etching rate in chlorine type gas etching. A reflective mask blank for EUV lithography, comprising a substrate, and a reflective layer to reflect EUV light, an absorber layer to absorb EUV light and a low reflective layer to an inspection light (wavelength:190 nm to 260 nm) for a mask pattern, formed in this order over the substrate, wherein the low reflective layer contains silicon (Si) and nitrogen (N) in a total content of at least 95 at %, has a Si content of from 5 to 80 at %, and a N content of from 15 to 90 at %.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 20, 2012
    Assignee: Asahi Glass Company, Limited
    Inventor: Kazuyuki Hayashi
  • Patent number: 8133643
    Abstract: A reflective mask blank for EUV lithography having an absorbing layer which has a low reflectivity with respect to wavelength regions of EUV light and pattern inspection light, and which is easily controllable to obtain desired film composition and film thickness. The reflective mask blank for EUV lithography having a reflective layer for reflecting EUV light and an absorbing layer for absorbing EUV light which are formed in this order on a substrate, wherein the absorbing layer contains at least tantalum (Ta), boron (B), nitrogen (N) and hydrogen (H), and the absorbing layer has a B content that is 1 at % or greater but less than 5 at %, an H content that is between 0.1 and 5 at %, a Ta+N total content that is between 90 and 98.9%, and a Ta:N composition ratio (Ta:N) that is between 8:1 and 1:1.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: March 13, 2012
    Assignee: Asahi Glass Company, Limited
    Inventor: Kazuyuki Hayashi