Patents by Inventor Ken-Hsien Hsieh

Ken-Hsien Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923300
    Abstract: A semiconductor structure includes: a first gate structure and a second gate structure extending in a first direction; a first base level metal interconnect (M0) pattern extending in a second direction perpendicular to the first direction; a second M0 pattern extending in the second direction; a third M0 pattern located between the first and second gate structures and extending in the first direction, two ends of the third M0 pattern connected to the first M0 pattern and the second M0 pattern, respectively; a fourth M0 pattern and a fifth M0 pattern located between the first and second M0 patterns and extending in the second direction. A distance between the fourth M0 pattern and the first M0 pattern in the first direction is equal to a minimum M0 pattern pitch, and a distance between the fourth M0 pattern and the second M0 pattern is equal to the minimum M0 pattern pitch.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Wei Peng, Jiann-Tyng Tzeng, Ken-Hsien Hsieh
  • Publication number: 20240063119
    Abstract: A semiconductor structure includes: a first gate structure and a second gate structure extending in a first direction; a first base level metal interconnect (M0) pattern extending in a second direction perpendicular to the first direction; a second M0 pattern extending in the second direction; a third M0 pattern located between the first and second gate structures and extending in the first direction, two ends of the third M0 pattern connected to the first M0 pattern and the second M0 pattern, respectively; a fourth M0 pattern and a fifth M0 pattern located between the first and second M0 patterns and extending in the second direction. A distance between the fourth M0 pattern and the first M0 pattern in the first direction is equal to a minimum M0 pattern pitch, and a distance between the fourth M0 pattern and the second M0 pattern is equal to the minimum M0 pattern pitch.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 22, 2024
    Inventors: Shih-Wei Peng, Jiann-Tyng Tzeng, Ken-Hsien Hsieh
  • Patent number: 11854820
    Abstract: A method includes forming a first layer on a substrate; forming a first plurality of trenches in the first layer by a patterning process; and forming a second plurality of trenches in the first layer by another patterning process, resulting in combined trench patterns in the first layer. A first trench of the second plurality connects two trenches of the first plurality. The method further includes forming dielectric spacer features on sidewalls of the combined trench patterns. A space between two opposing sidewalls of the first trench is completely filled by the dielectric spacer features and another space between two opposing sidewalls of one of the two trenches is partially filled by the dielectric spacer features.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Gun Liu, Cheng-Hsiung Tsai, Chung-Ju Lee, Chih-Ming Lai, Chia-Ying Lee, Jyu-Horng Shieh, Ken-Hsien Hsieh, Ming-Feng Shieh, Shau-Lin Shue, Shih-Ming Chang, Tien-I Bao, Tsai-Sheng Gau
  • Publication number: 20230408930
    Abstract: In a method of tool matching, aberration maps of two or more optical systems of two or more scanner tools are determined. A photoresist pattern is generated by projecting a first layout pattern by an optical system of each one of the two or more scanner tools on a respective substrate. One or more Zernike coefficients of the two or more optical systems are adjusted based on the determined aberration maps of the two or more optical systems to minimize critical dimension (CD) variations in a first region of the photoresist patterns on each respective substrate.
    Type: Application
    Filed: June 17, 2022
    Publication date: December 21, 2023
    Inventors: Shih-Chuan HUANG, Sheng-Min WANG, Shih-Ming CHANG, Ken-Hsien HSIEH
  • Publication number: 20230384691
    Abstract: A method includes receiving a layout for fabricating a mask, determining a plurality of target contours corresponding to a plurality of sets of lithographic process conditions, determining a modification to the layout, simulating the modification to the layout under the plurality of sets of lithographic process conditions to produce a plurality of simulated contours, determining a cost of the modification to the layout based on comparisons between the plurality of simulated contours and corresponding ones in the plurality of target contours, and providing the modification to the layout for fabricating the mask based at least in part on the cost being within a predetermined threshold.
    Type: Application
    Filed: July 30, 2023
    Publication date: November 30, 2023
    Inventors: Dong-Yo Jheng, Ken-Hsien Hsieh, Shih-Ming Chang, Chih-Jie Lee, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20230367234
    Abstract: A method of performing a lithography process includes providing a test pattern. The test pattern includes a first set of lines arranged at a first pitch, a second set of lines arranged at the first pitch, and further includes at least one reference line between the first set of lines and the second set of lines. The test pattern is exposed with a radiation source providing an asymmetric, monopole illumination profile to form a test pattern structure on a substrate. The test pattern structure is then measured and a measured distance correlated to an offset of a lithography parameter. A lithography process is adjusted based on the offset of the lithography parameter.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Chih-Jie Lee, Shih-Chun Huang, Shih-Ming Chang, Ken-Hsien Hsieh, Yung-Sung Yen, Ru-Gun Liu
  • Publication number: 20230369062
    Abstract: In a method of forming a groove pattern extending in a first axis in an underlying layer over a semiconductor substrate, a first opening is formed in the underlying layer, and the first opening is extended in the first axis by directional etching to form the groove pattern.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Ru-Gun LIU, Chih-Ming LAI, Wei-Liang LIN, Yung-Sung YEN, Ken-Hsien HSIEH, Chin-Hsiang LIN
  • Patent number: 11789370
    Abstract: A method includes receiving a layout for fabricating a mask, determining a first target contour corresponding to a first set of process conditions, determining a second target contour corresponding to a second set of process conditions, simulating a first potential modification to the layout under the first set of process conditions to generate a first simulated contour, simulating a second potential modification to the layout under the second set of process conditions to generate a second simulated contour, evaluating costs of the first and second potential modifications based on comparing the first and second simulated contours to the first and second target contours, respectively, and providing the layout and one of the first and second potential modifications having a lower cost for fabricating the mask. The first set of process conditions is different from the second set of process conditions.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Dong-Yo Jheng, Ken-Hsien Hsieh, Shih-Ming Chang, Chih-Jie Lee, Shuo-Yen Chou, Ru-Gun Liu
  • Patent number: 11782352
    Abstract: A method of performing a lithography process includes providing a test pattern. The test pattern includes a first set of lines arranged at a first pitch, a second set of lines arranged at the first pitch, and further includes at least one reference line between the first set of lines and the second set of lines. The test pattern is exposed with a radiation source providing an asymmetric, monopole illumination profile to form a test pattern structure on a substrate. The test pattern structure is then measured and a measured distance correlated to an offset of a lithography parameter. A lithography process is adjusted based on the offset of the lithography parameter.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Jie Lee, Shih-Chun Huang, Shih-Ming Chang, Ken-Hsien Hsieh, Yung-Sung Yen, Ru-Gun Liu
  • Publication number: 20230314927
    Abstract: A photo mask for an extreme ultraviolet (EUV) lithography includes a circuit pattern, and sub-resolution assist patterns disposed around and connected to the circuit pattern. A dimension of the sub-resolution assist patterns is in a range from 10 nm to 50 nm.
    Type: Application
    Filed: June 6, 2022
    Publication date: October 5, 2023
    Inventors: Sheng-Min WANG, Yu-Tse LAI, Ken-Hsien HSIEH
  • Publication number: 20230305381
    Abstract: A photo mask for an extreme ultraviolet (EUV) lithography includes a mask alignment mark for aligning the photo mask to an EUV lithography tool, and sub-resolution assist patterns disposed around the mask alignment mark. A dimension of the sub-resolution assist patterns is in a range from 10 nm to 50 nm.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 28, 2023
    Inventors: Wei-Shuo SU, Yu-Tse LAI, Sheng-Min WANG, Ken-Hsien HSIEH, Chieh-Jen CHENG, Ya Hui CHANG
  • Patent number: 11764068
    Abstract: In a method of manufacturing a semiconductor device, a trench pattern is formed in a first layer disposed over an underlying layer, and a first dimension of the trench pattern is reduced by first directional deposition. In the first directional deposition, a deposition rate on a first side wall of the trench pattern extending in a first axis is greater than a deposition rate on a second side wall of the trench pattern extending in a second axis crossing the first axis, the first axis and the second axis being horizontal and parallel to a surface of the underlying layer.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Gun Liu, Chih-Ming Lai, Wei-Liang Lin, Yung-Sung Yen, Ken-Hsien Hsieh, Chin-Hsiang Lin
  • Publication number: 20230260786
    Abstract: A method includes forming a conductive member over a first conductive line; forming a second conductive line over the conductive member; and removing a portion of the conductive member exposed by the second conductive line to form a conductive via. The formation of the second conductive line is implemented prior to the formation of the conductive via. A semiconductor structure includes a first conductive line having a first surface; a second conductive line disposed above the first conductive line and having a second surface overlapping the first surface; and a conductive via electrically connected to the first surface and the second surface. The conductive via includes a first end disposed within the first surface, a second end disposed within the second surface, and a cross-section between the first end and the second end, wherein at least two of interior angles of the cross-section are substantially unequal to 90°.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Inventors: JOHNNY CHIAHAO LI, SHIH-MING CHANG, KEN-HSIEN HSIEH, CHI-YU LU, YUNG-CHEN CHIEN, HUI-ZHONG ZHUANG, JERRY CHANG JUI KAO, XIANGDONG CHEN
  • Publication number: 20230205093
    Abstract: In a method of manufacturing a photo mask used in a semiconductor manufacturing process, a mask pattern layout in which a plurality of patterns are arranged is acquired. The plurality of patterns are converted into a graph having nodes and links. It is determined whether the nodes are colorable by N colors without causing adjacent nodes connected by a link to be colored by a same color, where N is an integer equal to or more than 3. When it is determined that the nodes are colorable by N colors, the nodes are colored with the N colors. The plurality of patterns are classified into N groups based on the N colored nodes. The N groups are assigned to N photo masks. N data sets for the N photo masks are output.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Ken-Hsien HSIEH, Ru-Gun LIU, Wei-Shuo SU
  • Patent number: 11592751
    Abstract: In a method of manufacturing a photo mask used in a semiconductor manufacturing process, a mask pattern layout in which a plurality of patterns are arranged is acquired. The plurality of patterns are converted into a graph having nodes and links. It is determined whether the nodes are colorable by N colors without causing adjacent nodes connected by a link to be colored by a same color, where N is an integer equal to or more than 3. When it is determined that the nodes are colorable by N colors, the nodes are colored with the N colors. The plurality of patterns are classified into N groups based on the N colored nodes. The N groups are assigned to N photo masks. N data sets for the N photo masks are output.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ken-Hsien Hsieh, Ru-Gun Liu, Wei-Shuo Su
  • Publication number: 20230008779
    Abstract: A semiconductor structure includes: a first gate structure and a second gate structure extending in a first direction; a first base level metal interconnect (M0) pattern extending in a second direction perpendicular to the first direction; a second M0 pattern extending in the second direction; a third M0 pattern located between the first and second gate structures and extending in the first direction, two ends of the third M0 pattern connected to the first M0 pattern and the second M0 pattern, respectively; a fourth M0 pattern and a fifth M0 pattern located between the first and second M0 patterns and extending in the second direction. A distance between the fourth M0 pattern and the first M0 pattern in the first direction is equal to a minimum M0 pattern pitch, and a distance between the fourth M0 pattern and the second M0 pattern is equal to the minimum M0 pattern pitch.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Inventors: Shih-Wei Peng, Jiann-Tyng Tzeng, Ken-Hsien Hsieh
  • Patent number: 11543753
    Abstract: In one example, an apparatus includes an extreme ultraviolet illumination source and an illuminator. The extreme ultraviolet illumination source is arranged to generate a beam of extreme ultraviolet illumination to pattern a resist layer on a substrate. The illuminator is arranged to direct the beam of extreme ultraviolet illumination onto a surface of a photomask. In one example, the illuminator includes a field facet mirror and a pupil facet mirror. The field facet mirror includes a first plurality of facets arranged to split the beam of extreme ultraviolet illumination into a plurality of light channels. The pupil facet mirror includes a second plurality of facets arranged to direct the plurality of light channels onto the surface of the photomask. The distribution of the second plurality of facets is denser at a periphery of the pupil facet mirror than at a center of the pupil facet mirror.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: January 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ken-Hsien Hsieh, Shih-Ming Chang, Wen Lo, Wei-Shuo Su, Hua-Tai Lin
  • Publication number: 20220399272
    Abstract: A semiconductor processing system includes a layout database that stores a plurality of layouts indicating features to be formed in a wafer. The semiconductor processing system includes a layout analyzer that analyzes the layouts and determines, for each layout, whether a non-perpendicular particle bombardment process should be utilized in conjunction with a photolithography process for forming the features of the layout in a wafer.
    Type: Application
    Filed: December 30, 2021
    Publication date: December 15, 2022
    Inventors: Yu-Tien SHEN, Ken-Hsien HSIEH, Shih-Ming CHANG
  • Publication number: 20220365452
    Abstract: A method of performing a lithography process includes providing a test pattern. The test pattern includes a first set of lines arranged at a first pitch, a second set of lines arranged at the first pitch, and further includes at least one reference line between the first set of lines and the second set of lines. The test pattern is exposed with a radiation source providing an asymmetric, monopole illumination profile to form a test pattern structure on a substrate. The test pattern structure is then measured and a measured distance correlated to an offset of a lithography parameter. A lithography process is adjusted based on the offset of the lithography parameter.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Inventors: Chih-Jie LEE, Shih-Chun HUANG, Shih-Ming CHANG, Ken-Hsien HSIEH, Yung-Sung YEN, Ru-Gun LIU
  • Publication number: 20220357669
    Abstract: A semiconductor processing system includes a first photolithography system and a second photolithography system. The semiconductor processing system includes a layout database that stores a plurality of layouts indicating features to be formed in a wafer. The semiconductor processing system includes a layout analyzer that analyzes the layouts and selects either the first photolithography system or the second photolithography system based on dimensions of features in the layouts.
    Type: Application
    Filed: December 30, 2021
    Publication date: November 10, 2022
    Inventors: Shih-Ming CHANG, Ken-Hsien HSIEH, Yu-Tien SHEN