Patents by Inventor Ken-Hsien Hsieh

Ken-Hsien Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9754073
    Abstract: A method includes receiving a target pattern that is defined by a main pattern, a first cut pattern, and a second cut pattern, with a computing system, checking the target pattern for compliance with a first constraint, the first constraint associated with the first cut pattern, with the computing system, checking the target pattern for compliance with a second constraint, the second constraint associated with the second cut pattern, and with the computing system, modifying the pattern in response to determining that a violation of either the first constraint or the second constraint is found during the checking.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: September 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huang-Yu Chen, Yuan-Te Hou, Yu-Hsiang Kao, Ken-Hsien Hsieh, Ru-Gun Liu, Lee-Chung Lu
  • Patent number: 9728407
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming mandrels over a material layer and forming spacers along sidewalls of mandrels, forming a patterned hard mask to cover a first region, depositing a filling layer in a second region while the patterned hard mask covers the first region. A space between two adjacent spacers in the second region is filled in by the filling layer. The method also includes recessing the filling layer to form a filling block in the space between two adjacent spacers in the second region, removing the patterned hard mask, removing mandrels and etching the material layer by using spacers and the filling block as an etch mask to form material features in the first region and the second region, respectively.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: August 8, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ken-Hsien Hsieh, Chi-Cheng Hung, Chih-Ming Lai, Wei-Liang Lin, Chun-Kuang Chen, Ru-Gun Liu
  • Patent number: 9716032
    Abstract: The present disclosure provides a method for forming a semiconductor device. The semiconductor device includes a first conductive line disposed over a substrate. The first conductive line is located in a first interconnect layer and extends along a first direction. The semiconductor device includes a second conductive line and a third conductive line each extending along a second direction different from the first direction. The second and third conductive lines are located in a second interconnect layer that is different from the first interconnect layer. The second and third conductive lines are separated by a gap that is located over or below the first conductive line. The semiconductor device includes a fourth conductive line electrically coupling the second and third conductive lines together. The fourth conductive line is located in a third interconnect layer that is different from the first interconnect layer and the second interconnect layer.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: July 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Po Tang, Shih-Ming Chang, Ken-Hsien Hsieh, Ru-Gun Liu
  • Publication number: 20170207081
    Abstract: A technique for patterning a workpiece such as an integrated circuit workpiece is provided. In an exemplary embodiment, the method includes receiving a dataset specifying a plurality features to be formed on the workpiece. A first patterning of a hard mask of the workpiece is performed based on a first set of features of the plurality of features, and a first spacer material is deposited on a sidewall of the patterned hard mask. A second patterning is performed based on a second set of features, and a second spacer material is deposited on a sidewall of the first spacer material. A third patterning is performed based on a third set of features. A portion of the workpiece is selectively processed using a pattern defined by a remainder of at least one of the patterned hard mask layer, the first spacer material, or the second spacer material.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventors: Yung-Sung Yen, Chun-Kuang Chen, Ko-Bin Kao, Ken-Hsien Hsieh, Ru-Gun Liu
  • Publication number: 20170194146
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming mandrels over a material layer and forming spacers along sidewalls of mandrels, forming a patterned hard mask to cover a first region, depositing a filling layer in a second region while the patterned hard mask covers the first region. A space between two adjacent spacers in the second region is filled in by the filling layer. The method also includes recessing the filling layer to form a filling block in the space between two adjacent spacers in the second region, removing the patterned hard mask, removing mandrels and etching the material layer by using spacers and the filling block as an etch mask to form material features in the first region and the second region, respectively.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Ken-Hsien Hsieh, Chi-Cheng Hung, Chih-Ming Lai, Wei-Liang Lin, Chun-Kuang Chen, Ru-Gun Liu
  • Publication number: 20170193147
    Abstract: Disclosed is a method of fabricating an integrated circuit (IC) using a multiple (N>2) patterning technique. The method provides a layout of the IC having a set of IC features. The method further includes deriving a graph from the layout, the graph having vertices connected by edges, the vertices representing the IC features, and the edges representing spacing between the IC features. The method further includes selecting vertices, wherein the selected vertices are not directly connected by an edge, and share at least one neighboring vertex that is connected by N edges. The method further includes using a computerized IC tool to merge the selected vertices, thereby reducing a number of edges connecting the neighboring vertex to be below N. The method further includes removing a portion of the vertices that are connected by less than N edges.
    Type: Application
    Filed: June 10, 2016
    Publication date: July 6, 2017
    Inventors: Ken-Hsien Hsieh, Chih-Ming Lai, Ru-Gun Liu, Wen-Chun Huang, Wen-Li Cheng, Pai-Wei Wan
  • Patent number: 9684236
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a first patterned hard mask over a material layer. The first patterned hard mask defines an opening. The method also includes forming a direct-self-assembly (DSA) layer having a first portion and a second portion within the opening, removing the first portion of the DSA layer, forming spacers along sidewalls of the second portion of the DSA layer and removing the second portion of the DSA layer. The spacers form a second patterned hard mask over the material layer.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: June 20, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ken-Hsien Hsieh, Kuan-Hsin Lo, Shih-Ming Chang, Wei-Liang Lin, Joy Cheng, Chun-Kuang Chen, Ching-Yu Chang, Kuei-Shun Chen, Ru-Gun Liu, Tsai-Sheng Gau, Chin-Hsiang Lin
  • Patent number: 9627310
    Abstract: A multilayer device and method for fabricating a multilayer device is disclosed. An exemplary multilayer device includes a substrate, a first interlayer dielectric (ILD) layer disposed over the substrate, and a first conductive layer including a first plurality of conductive lines formed in the first ILD layer. The device further includes a second ILD layer disposed over the first ILD layer, and a second conductive layer including a second plurality of conductive lines formed in the second ILD layer. At least one conductive line of the second plurality of conductive lines is formed adjacent to at least one conductive line of the first plurality of conductive lines. The at least one conductive line of the second plurality of conductive lines contacts the at least one conductive line of the first plurality of conductive lines at an interface.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: April 18, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh, Tsong-Hua Ou, Ru-Gun Liu, Fang-Yu Fan, Yuan-Te Hou
  • Patent number: 9613850
    Abstract: A technique for patterning a workpiece such as an integrated circuit workpiece is provided. In an exemplary embodiment, the method includes receiving a dataset specifying a plurality features to be formed on the workpiece. A first patterning of a hard mask of the workpiece is performed based on a first set of features of the plurality of features, and a first spacer material is deposited on a sidewall of the patterned hard mask. A second patterning is performed based on a second set of features, and a second spacer material is deposited on a sidewall of the first spacer material. A third patterning is performed based on a third set of features. A portion of the workpiece is selectively processed using a pattern defined by a remainder of at least one of the patterned hard mask layer, the first spacer material, or the second spacer material.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: April 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Sung Yen, Chun-Kuang Chen, Ko-Bin Kao, Ken-Hsien Hsieh, Ru-Gun Liu
  • Patent number: 9594866
    Abstract: A method includes receiving layout data representing a plurality of patterns. The layout data includes a plurality of layers and spaces identified between adjacent patterns. In at least one layer of the plurality of layers, the adjacent patterns violate a G0-rule. The method further includes determining whether each identified space is a critical G0-space. The identified space is determined to be a critical G0-space if a portion of at least one adjacent pattern that is removed merges two adjacent odd-loops of G0-spaces into a single even loop or G0 spaces or alternatively, if a portion of an adjacent pattern that is removed converts one odd-loop of G0-spaces to a non-loop of G0-spaces. The method further includes receiving a modification of at least one adjacent pattern and updating a spacing of a layer that is adjacent to the layers within the adjacent pattern that violate the G0-rule.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: March 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Dio Wang, Ken-Hsien Hsieh, Huang-Yu Chen, Li-Chun Tien, Ru-Gun Liu, Lee-Chung Lu
  • Publication number: 20170069505
    Abstract: A method includes forming a first layer on a substrate; forming a first plurality of trenches in the first layer by a first patterning process; and forming a second plurality of trenches in the first layer by second patterning process, wherein a first trench of the second plurality merges with two trenches of the first plurality to form a continuous trench. The method further includes forming spacer features on sidewalls of the first and second pluralities of trenches. The spacer features have a thickness. A width of the first trench is equal to or less than twice the thickness of the spacer features thereby the spacer features merge inside the first trench.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Inventors: RU-GUN LIU, CHENG-HSIUNG TSAI, CHUNG-JU LEE, CHIH-MING LAI, CHIA-YING LEE, JYU-HORNG SHIEH, KEN-HSIEN HSIEH, MING-FENG SHIEH, SHAU-LIN SHUE, SHIH-MING CHANG, TIEN-I BAO, TSAI-SHENG GAU
  • Patent number: 9581900
    Abstract: A method for using self aligned multiple patterning with multiple resist layers includes forming a first patterned resist layer onto a substrate, forming a spacer layer on top of the first patterned resist layer such that spacer forms on side walls of features of the first resist layer, and forming a second patterned resist layer over the spacer layer and depositing a masking layer. The method further includes performing a planarizing process to expose the first patterned resist layer, removing the first resist layer, removing the second resist layer, and exposing the substrate.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: February 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Chih-Ming Lai, Ken-Hsien Hsieh, Ru-Gun Liu, Shih-Ming Chang
  • Patent number: 9564327
    Abstract: One or more techniques or systems for forming a line end space structure are provided herein. In some embodiments, a first patterned second hard mask (HM) region is formed above a first HM region. Additionally, at least some of the first patterned second HM region is removed. In some embodiments, a first sacrificial HM region and a second sacrificial HM region are formed above at least one of the first patterned second HM region or the first HM region. Photo resist (PR) is patterned above the second sacrificial HM region, and a spacer region is deposited above the patterned PR and second sacrificial HM region. In some embodiments, at least some of at least one of the spacer region, the PR, or the respective sacrificial HMs is removed. In this way, a line end space structure associated with an end-to-end space is formed.
    Type: Grant
    Filed: May 25, 2015
    Date of Patent: February 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chia-Ying Lee, Jyu-Horng Shieh, Ming-Feng Shieh, Shih-Ming Chang, Chih-Ming Lai, Ken-Hsien Hsieh, Ru-Gun Liu
  • Patent number: 9530727
    Abstract: A method comprises: forming a plurality of reference voltage patterns in a first layer of a semiconductor substrate using a first mask, the reference voltage patterns including alternating first reference voltage patterns and second reference voltage patterns; and forming a plurality of signal patterns in the first layer of the semiconductor substrate using a second mask, ones of the plurality of signal patterns located between successive pairs of reference voltage patterns.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: December 27, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Cheng Xiao, Wei Min Chan, Ken-Hsien Hsieh
  • Patent number: 9524939
    Abstract: Provided is an alignment mark having a plurality of sub-resolution elements. The sub-resolution elements each have a dimension that is less than a minimum resolution that can be detected by an alignment signal used in an alignment process. Also provided is a semiconductor wafer having first, second, and third patterns formed thereon. The first and second patterns extend in a first direction, and the third pattern extend in a second direction perpendicular to the first direction. The second pattern is separated from the first pattern by a first distance measured in the second direction. The third pattern is separated from the first pattern by a second distance measured in the first direction. The third pattern is separated from the second pattern by a third distance measured in the first direction. The first distance is approximately equal to the third distance. The second distance is less than twice the first distance.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: December 20, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Feng Shieh, Ya Hui Chang, Ru-Gun Liu, Tsong-Hua Ou, Ken-Hsien Hsieh, Burn Jeng Lin
  • Publication number: 20160350473
    Abstract: A method includes receiving a target pattern that is defined by a main pattern, a first cut pattern, and a second cut pattern, with a computing system, checking the target pattern for compliance with a first constraint, the first constraint associated with the first cut pattern, with the computing system, checking the target pattern for compliance with a second constraint, the second constraint associated with the second cut pattern, and with the computing system, modifying the pattern in response to determining that a violation of either the first constraint or the second constraint is found during the checking.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Huang-Yu Chen, Yuan-Te Hou, Yu-Hsiang Kao, Ken-Hsien Hsieh, Ru-Gun Liu, Lee-Chung Lu
  • Patent number: 9502261
    Abstract: A method includes forming a first material layer on a substrate and performing a first patterning process using a first layout to form a first plurality of trenches in the first material layer. The method further includes performing a second patterning process using a second layout to form a second plurality of trenches in the first material layer, wherein the second layout a cut pattern for the first layout. The method further includes forming spacer features on sidewalls of both the first and second pluralities of trenches, wherein the spacer features have a thickness and the cut pattern corresponds to a first trench of the second plurality whose width is less than twice the thickness of the spacer features. The method further includes removing the first material layer; forming a second material layer on the substrate and within openings defined by the spacer features; and removing the spacer features.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: November 22, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Gun Liu, Cheng-Hsiung Tsai, Chung-Ju Lee, Chih-Ming Lai, Chia-Ying Lee, Jyu-Horng Shieh, Ken-Hsien Hsieh, Ming-Feng Shieh, Shau-Lin Shue, Shih-Ming Chang, Tien-I Bao, Tsai-Sheng Gau
  • Publication number: 20160293422
    Abstract: The present disclosure provides a method of patterning a target material layer over a semiconductor substrate. The method includes steps of forming a spacer feature over the target material layer using a first sub-layout and performing a photolithographic patterning process using a second sub-layout to form a first feature. A portion of the first feature extends over the spacer feature. The method further includes steps of removing the portion of the first feature extending over the spacer feature and removing the spacer feature. Other methods and associated patterned semiconductor wafers are also provided herein.
    Type: Application
    Filed: June 6, 2016
    Publication date: October 6, 2016
    Inventors: Tsong-Hua Ou, Ken-Hsien Hsieh, Shih-Ming Chang, Wen-Chun Huang, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20160284591
    Abstract: The present disclosure describes methods for transferring a desired layout into a target layer on a semiconductor substrate. An embodiment of the methods includes forming a first desired layout feature as a first line over the target layer; forming a spacer around the first line; depositing a spacer-surrounding material layer; removing the spacer to form a fosse pattern trench surrounding the first line; and transferring the fosse pattern trench into the target layer to form a fosse feature trench in the target layer, wherein the fosse feature trench surrounds a first portion of the target layer that is underneath a protection layer. In some embodiments, the method further includes patterning a second desired layout feature of the desired layout into the target layer wherein the fosse feature trench and the protection layer serve to self-align the second desired layout feature with the first portion of the target layer.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh, Chih-Ming Lai, Ming-Feng Shieh, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 9448470
    Abstract: A method for making a mask includes receiving an integrated circuit (IC) design layout and identifying at least one targeted-feature-surrounding-location (TFSL) in the IC design layout, wherein TFSL is identified by a model-based approach. The method further includes inserting at least one phase bar (PB) in the IC design layout and performing an optical proximity correction (OPC) to the IC design layout having the at least one PB to form a modified IC design layout. A mask is then fabricated based on the modified IC design layout.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: September 20, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Gun Liu, Shou-Yen Chou, Hoi-Tou Ng, Ken-Hsien Hsieh, Yi-Yin Chen