Patents by Inventor Kevin M. O'Connell

Kevin M. O'Connell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9482833
    Abstract: Light can be transmitted between a light source and a light detector or target by using at least two mating connector sections of a light pipe connector. A protrusion of one of the connector sections is designed to be received within a receptacle of another of the connector sections, which can make the light pipe connector mechanically compliant. The two connector sections are fabricated from an optically transmissive material, and have optically reflective surfaces in orthogonal orientations to optically transmissive surfaces adjacent to the light source and the light detector. When the protrusion of one of the connector sections is engaged within the receptacle of another connector section, light can be transmitted through optically transmissive surfaces adjacent to a light source and a light detector, while the orthogonally oriented optically reflective surfaces direct light towards the light detector.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: November 1, 2016
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis, Kory W. Weckman
  • Patent number: 9414528
    Abstract: A cooling apparatus for dissipating heat from an electronic module is disclosed. The cooling apparatus may include a thermally conductive shell having a surface in contact with, and configured to conduct heat away from, the module. The apparatus may also include an electrically insulative layer positioned between, and configured to conduct heat from, the module to the shell. The apparatus may also include an electrical cord, attached to the module that contains a thermally conductive layer in thermally conductive contact with the shell that is configured to conduct heat away from the shell. The apparatus may also include an electrically insulative layer between the thermally conductive layer and an electrical conductor within the electrical cord. The apparatus may also include an electrically insulative layer, positioned between the thermally conductive layer and an electrical cord outer surface, configured to convectively dissipate heat from the thermally conductive layer.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: August 9, 2016
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Patent number: 9414526
    Abstract: A cooling apparatus is disclosed, which may include multiple heat producing units. The cooling apparatus may also have a thermal interface material (TIM) to facilitate heat transfer away from the heat producing units. The cooling apparatus may also have multiple heat sink columns located above, and designed to conduct heat away from, corresponding heat producing units, through thermally conductive contact with corresponding portions of the TIM layer. The cooling apparatus may also have a load plate located above the heat sink columns, designed to hold the heat sink columns in a relatively fixed position above the heat producing units. The TIM layer may have an initial compressed state between the heat sink columns and the corresponding heat producing units. Each of the heat sink columns may be designed so that, in operation, the corresponding portion of the TIM layer may have a further compressed state.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: August 9, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha
  • Patent number: 9414527
    Abstract: A cooling apparatus for dissipating heat from an electronic module is disclosed. The cooling apparatus may include a thermally conductive shell having a surface in contact with, and configured to conduct heat away from, the module. The apparatus may also include an electrically insulative layer positioned between, and configured to conduct heat from, the module to the shell. The apparatus may also include an electrical cord, attached to the module that contains a thermally conductive layer in thermally conductive contact with the shell that is configured to conduct heat away from the shell. The apparatus may also include an electrically insulative layer between the thermally conductive layer and an electrical conductor within the electrical cord. The apparatus may also include an electrically insulative layer, positioned between the thermally conductive layer and an electrical cord outer surface, configured to convectively dissipate heat from the thermally conductive layer.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: August 9, 2016
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Patent number: 9392731
    Abstract: A cooling apparatus is disclosed, which may include multiple heat producing units. The cooling apparatus may also have a thermal interface material (TIM) to facilitate heat transfer away from the heat producing units. The cooling apparatus may also have multiple heat sink columns located above, and designed to conduct heat away from, corresponding heat producing units, through thermally conductive contact with corresponding portions of the TIM layer. The cooling apparatus may also have a load plate located above the heat sink columns, designed to hold the heat sink columns in a relatively fixed position above the heat producing units. The TIM layer may have an initial compressed state between the heat sink columns and the corresponding heat producing units. Each of the heat sink columns may be designed so that, in operation, the corresponding portion of the TIM layer may have a further compressed state.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: July 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha
  • Patent number: 9389379
    Abstract: A method and structure are provided for implementing a dual optical and electrical land grid array (LGA) contact. A contact for electrical and optical connection between a module and a printed circuit board (PCB) includes material providing electrical connection and an integrated material providing an optical connection; and the contact is used in a land grid array (LGA) arrangement.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: July 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160187601
    Abstract: A method and structure are provided for implementing a dual optical and electrical land grid array (LGA) contact. A contact for electrical and optical connection between a module and a printed circuit board (PCB) includes material providing electrical connection and an integrated material providing an optical connection; and the contact is used in a land grid array (LGA) arrangement.
    Type: Application
    Filed: April 28, 2015
    Publication date: June 30, 2016
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160187602
    Abstract: A method and structure are provided for implementing a dual optical and electrical land grid array (LGA) contact. A contact for electrical and optical connection between a module and a printed circuit board (PCB) includes material providing electrical connection and an integrated material providing an optical connection; and the contact is used in a land grid array (LGA) arrangement.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 30, 2016
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160172252
    Abstract: A method for aligning a chip onto a substrate is disclosed. The method includes, depositing a ferrofluid, onto a substrate that has one or more pads that electrically couple to a semiconductor layer. The method can include a chip with solder balls electrically coupled to the logic elements of the chip, which can be placed onto the deposited ferrofluid, where the chip is supported on the ferrofluid, in a substantially coplanar orientation to the substrate. The method can include determining if the chip is misaligned from a desired location on the substrate. The method can include adjusting the current location of the chip in response to determining that the solder balls of the chip are misaligned from the desired location on the pads of the substrate, until the chip is aligned in the desired location.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 16, 2016
    Inventors: Joseph Kuczynski, Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160172324
    Abstract: A method for aligning a chip onto a substrate is disclosed. The method includes, depositing a ferrofluid, onto a substrate that has one or more pads that electrically couple to a semiconductor layer. The method can include a chip with solder balls electrically coupled to the logic elements of the chip, which can be placed onto the deposited ferrofluid, where the chip is supported on the ferrofluid, in a substantially coplanar orientation to the substrate. The method can include determining if the chip is misaligned from a desired location on the substrate. The method can include adjusting the current location of the chip in response to determining that the solder balls of the chip are misaligned from the desired location on the pads of the substrate, until the chip is aligned in the desired location.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 16, 2016
    Inventors: Joseph Kuczynski, Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160135327
    Abstract: A cooling apparatus for dissipating heat from an electronic module is disclosed. The cooling apparatus may include a thermally conductive shell having a surface in contact with, and configured to conduct heat away from, the module. The apparatus may also include an electrically insulative layer positioned between, and configured to conduct heat from, the module to the shell. The apparatus may also include an electrical cord, attached to the module that contains a thermally conductive layer in thermally conductive contact with the shell that is configured to conduct heat away from the shell. The apparatus may also include an electrically insulative layer between the thermally conductive layer and an electrical conductor within the electrical cord. The apparatus may also include an electrically insulative layer, positioned between the thermally conductive layer and an electrical cord outer surface, configured to convectively dissipate heat from the thermally conductive layer.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 12, 2016
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160135332
    Abstract: A cooling apparatus for dissipating heat from an electronic module is disclosed. The cooling apparatus may include a thermally conductive shell having a surface in contact with, and configured to conduct heat away from, the module. The apparatus may also include an electrically insulative layer positioned between, and configured to conduct heat from, the module to the shell. The apparatus may also include an electrical cord, attached to the module that contains a thermally conductive layer in thermally conductive contact with the shell that is configured to conduct heat away from the shell. The apparatus may also include an electrically insulative layer between the thermally conductive layer and an electrical conductor within the electrical cord. The apparatus may also include an electrically insulative layer, positioned between the thermally conductive layer and an electrical cord outer surface, configured to convectively dissipate heat from the thermally conductive layer.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 12, 2016
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20160095254
    Abstract: An apparatus for cooling a heat-producing electronic device is disclosed. The apparatus may include a thermally conductive vessel to mate with and contain a working fluid in contact with the heat-producing electronic device. A bottom side of the thermally conductive vessel may include a sealing surface defining an aperture and configured to mate with, and inside a perimeter of, a top surface of the heat-producing electronic device. The thermally conductive vessel may also include an evaporative cavity formed by mating the thermally conductive vessel with the heat-producing electronic device, and having a wall that is the top surface of the heat-producing electronic device and a wall that is an interior surface of the thermally conductive vessel. The thermally conductive vessel may also include a condensing cavity adjoining the evaporative cavity, to receive heat by condensing the working fluid from a vapor state to a liquid state.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Patent number: 9299591
    Abstract: A method and structures are provided for implementing individual integrated circuit chip attach in a three dimensional (3D) stack. A plurality of hollow copper pillars is formed, and the hollow copper pillars are coated with lead free solder using vapor deposition.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Patent number: 9299686
    Abstract: A method and structures are provided for implementing individual integrated circuit chip attach in a three dimensional (3D) stack. A plurality of hollow copper pillars is formed, and the hollow copper pillars are coated with lead free solder using vapor deposition.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha, Karl Stathakis
  • Publication number: 20150138731
    Abstract: A cooling apparatus is disclosed, which may include multiple heat producing units. The cooling apparatus may also have a thermal interface material (TIM) to facilitate heat transfer away from the heat producing units. The cooling apparatus may also have multiple heat sink columns located above, and designed to conduct heat away from, corresponding heat producing units, through thermally conductive contact with corresponding portions of the TIM layer. The cooling apparatus may also have a load plate located above the heat sink columns, designed to hold the heat sink columns in a relatively fixed position above the heat producing units. The TIM layer may have an initial compressed state between the heat sink columns and the corresponding heat producing units. Each of the heat sink columns may be designed so that, in operation, the corresponding portion of the TIM layer may have a further compressed state.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha
  • Publication number: 20150136365
    Abstract: A cooling apparatus is disclosed, which may include multiple heat producing units. The cooling apparatus may also have a thermal interface material (TIM) to facilitate heat transfer away from the heat producing units. The cooling apparatus may also have multiple heat sink columns located above, and designed to conduct heat away from, corresponding heat producing units, through thermally conductive contact with corresponding portions of the TIM layer. The cooling apparatus may also have a load plate located above the heat sink columns, designed to hold the heat sink columns in a relatively fixed position above the heat producing units. The TIM layer may have an initial compressed state between the heat sink columns and the corresponding heat producing units. Each of the heat sink columns may be designed so that, in operation, the corresponding portion of the TIM layer may have a further compressed state.
    Type: Application
    Filed: April 11, 2014
    Publication date: May 21, 2015
    Applicant: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Arvind K. Sinha
  • Patent number: 8779585
    Abstract: A method and structures are provided for implementing enhanced thermal conductivity between a lid and heat sink for stacked modules. A chip lid and lateral heat distributor includes cooperating features for implementing enhanced thermal conductivity. The chip lid includes a groove along an inner side wall including a flat wall surface and a curved edge surface. The lateral heat distributor includes a mating edge portion received within the groove. The mating edge portion includes a bent arm for engaging the curved edge surface groove and a flat portion. The lateral heat distributor is assembled into place with the chip lid, the mating edge portion of the lateral heat distributor bends and snaps into the groove of the chip lid. The bent arm portion presses on the curved surface of the groove, and provides an upward force to push the flat portion against the flat wall surface of the groove.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kevin M. O'Connell, Arvind K. Sinha, Kory W. Weckman, II
  • Patent number: 8716597
    Abstract: A method and structure for implementing enhanced dimensional stability with a graphite nanotube hybrid socket. A socket housing wall includes a plurality of aligned graphite nanofibers. The plurality of aligned graphite nanofibers distributing heat and providing enhanced dimensional stability. For example, the plurality of aligned graphite nanofibers more evenly distributes heat when the socket is undergoing solder reflow processes, thereby reducing strain.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Phillip V. Mann, Kevin M. O'Connell, Mark D. Plucinski, Sandra J. Shirk/Heath, Arvind K. Sinha
  • Publication number: 20140087586
    Abstract: According to embodiments of the invention, an assembly having first and second components may be provided. The first component may include one or more connectors corresponding to one or more through-holes of a circuit board. The second component may include one or more receptacles to fixedly receive the connectors, wherein the first and second components are adapted to be located on opposing sides of the circuit board in an assembled position. In some embodiments, the first and second components may include electrical connectors soldered to the circuit board. In some embodiments, the connectors may include one or more pawls and the receptacles may include one or more ratchets. In other embodiments, the connectors may be threaded members and the receptacles may be threaded apertures.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Kevin M. O'Connell, Arvind K. Sinha, Kory W. Weckman