Patents by Inventor Kevin McCullough

Kevin McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060231231
    Abstract: A component is provided that is net shape molded using a polymer to form the core structure and which includes an integrally formed metallized coating or layer on at least one of the exterior surfaces thereof. The process of forming the component includes two-shot molding process wherein a thin layer of metal or the base polymer component is molded, the mold is adjusted and then the remainder of the part is molded. Alternately, an insert molding process may be employed such that after the polymer base part is formed, it may be placed into a mold cavity that is slightly larger than the entire part, thereby allowing substantially the entire exterior surface of the part to be over molded with a molten metal.
    Type: Application
    Filed: April 19, 2006
    Publication date: October 19, 2006
    Inventor: Kevin McCULLOUGH
  • Publication number: 20060234068
    Abstract: A method is provided for forming a net shape molded component that includes an integral metallized coating or layer on the exterior surface thereof. The method includes injecting a carefully matched mixture of a molten polymer resin and a molten metallic alloy into a mold cavity under pressure. Due to the differential in material viscosities, the metal tends to migrate to the outer surface of the molded part when placed under pressure, ultimately creating a net shape molded part having a polymer core with a metallic layer at the exterior surfaces thereof. Further, the present invention provides for the compounding of a feedstock suitable for use in conjunction with the method described above.
    Type: Application
    Filed: April 12, 2006
    Publication date: October 19, 2006
    Inventor: Kevin McCullough
  • Patent number: 7094822
    Abstract: The present invention relates to thermally conductive, elastomeric pads. The pads can be made by injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 22, 2006
    Assignee: Cool Shield, Inc.
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Patent number: 7038009
    Abstract: The present invention relates to thermally conductive, elastomeric pads and methods for manufacturing such pads. The methods involve injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: May 2, 2006
    Assignee: Cool Shield, Inc.
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Patent number: 7013555
    Abstract: The present invention discloses a method of providing an integral thermal interface on an interface surface of a heat dissipation device, such as a heat sink. In accordance with the present invention, the phase change material is applied directly onto the interface surface of the heat sink to form an integral interface layer directly on the heat sink during the manufacturing process. This process includes the steps of providing a heat dissipating device having an interface surface, liquefying the phase change material at a controlled temperature so as to decrease the material viscosity to a flowable form, applying the liquefied phase change material directly onto the mating surface of the heat dissipating device either by directly dispensing the material, screen printing or stencil printing and cooling the material causing it to cure on the surface of the heat dissipating device.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: March 21, 2006
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6981805
    Abstract: An electronic connector having a housing containing a circuit board with a heat-generating component, such as a photodiode or laser, is provided. The housing is molded over the circuit board and heat-generating component. The housing is made from a moldable, thermally conductive polymer composition containing a base polymer and thermally conductive filler material. Liquid crystal polymers can be used as the base polymer, and boron nitride particles and carbon fibers can be used as the thermally conductive filler materials. In one embodiment, the thermally conductive polymer composition includes 30 to 60% of a base polymer, 25% to 50% of a first thermally conductive filler material, and 10 to 25% of a second thermally conductive filler material. The molded housing is capable of dissipating heat from the heat-generating component. A method for making the electronic connector is also provided.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: January 3, 2006
    Assignee: Cool Options, Inc.
    Inventors: James D. Miller, E. Mikhail Sagal, Kevin A. McCullough
  • Patent number: 6976769
    Abstract: A light-emitting diode reflector assembly having a heat pipe and a reflector body is provided. The assembly further includes a mounting member for mounting a circuit board having an array of light-emitting diodes. The mounting member and reflector body are made from a thermally-conductive polymer composition comprising: i) about 20% to about 80% by weight of a base polymer matrix such as polycarbonate; and ii) about 20% to about 80% by weight of a thermally-conductive material such as carbon graphite.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: December 20, 2005
    Assignee: Cool Options, Inc.
    Inventors: Kevin McCullough, James Miller, E. Mikhail Sagal
  • Publication number: 20050209383
    Abstract: A thermally-conductive plastic substrate for supporting electronic circuits is provided. The substrate has a relatively low dielectric constant and good mechanical strength. The substrate is made from a polymer composition comprising a base polymer matrix and a thermally-conductive, electrically-insulating material. The composition can comprise polyphenylene sulfide and boron nitride. The composition can further comprise a reinforcing material such as glass. The invention also encompasses methods for making such substrates.
    Type: Application
    Filed: May 13, 2005
    Publication date: September 22, 2005
    Inventors: James Miller, E. Sagal, Kevin McCullough
  • Publication number: 20050189523
    Abstract: A polymer composition having high thermal conductivity and dielectric strength is provided. The polymer composition comprises a base polymer matrix and a thermally-conductive, electrically-insulating material. A reinforcing material such as glass can be added to the composition. The polymer composition can be molded into packaging assemblies for electronic devices such as capacitors, transistors, and resistors.
    Type: Application
    Filed: April 29, 2005
    Publication date: September 1, 2005
    Inventors: E. Sagal, Kevin McCullough, James Miller
  • Publication number: 20050189522
    Abstract: A polymer composition having high thermal conductivity and dielectric strength is provided. The polymer composition comprises a base polymer matrix and a thermally-conductive, electrically-insulating material. A reinforcing material such as glass can be added to the composition. The polymer composition can be molded into packaging assemblies for electronic devices such as capacitors, transistors, and resistors.
    Type: Application
    Filed: April 29, 2005
    Publication date: September 1, 2005
    Inventors: E. Mikhail Sagal, Kevin McCullough, James Miller
  • Patent number: 6899160
    Abstract: The present invention discloses a conductive injection molding composition. The thermally conductive composition includes a metallic base matrix of, by volume, between 30 and 60 percent. A first thermally conductive filler, by volume, between 25 and 60 percent is provided in the composition that has a relatively high aspect ratio of at least 10:1. In addition, an alternative embodiment of the composition mixture includes a second thermally conductive filler, by volume, between 10 and 25 percent that has a relatively low aspect ratio of 5:1 or less.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: May 31, 2005
    Assignee: Cool Options, Inc.
    Inventor: Kevin A. McCullough
  • Publication number: 20050110380
    Abstract: A method for making molded reflector articles having light-reflecting surfaces is provided. The method involves injection-molding a thermally-conductive, polymer composition comprising: a) about 20% to about 80% by weight of a base polymer matrix such as polycarbonate; and b) about 20% to about 80% by weight of a thermally-conductive carbon material such as graphite. The method can be used to make reflector articles such as housings for automotive tail lamps, head lamps, and other lighting fixtures.
    Type: Application
    Filed: December 16, 2004
    Publication date: May 26, 2005
    Inventors: Kevin McCullough, James Miller, E. Sagal
  • Publication number: 20050109766
    Abstract: A method for making a thermoplastic, thermally-conductive interface article is provided. The method used to make the interface article involves injection-molding a moldable composition into molding members. The moldable composition contains a base thermoplastic elastomer matrix, thermally-conductive filler material, and temperature-activated phase change material. The thermally-conductive articles can be used as thermal interfaces to dissipate heat from heat-generating electronic devices.
    Type: Application
    Filed: December 16, 2004
    Publication date: May 26, 2005
    Inventors: James Miller, Kevin McCullough, E. Sagal, Jeffrey Panek
  • Publication number: 20050101712
    Abstract: A thermoplastic, thermally-conductive interface article is provided. The interface article is elastomeric and can be used to provide a thermally-conductive pathway between a heat-generating product such as an electronic device and a heat-sink. The interface article also can have good electrical-conductivity. The elastomeric interface article is made from a composition comprising a base thermoplastic elastomer matrix, thermally-conductive filler material, and temperature-activated phase change material.
    Type: Application
    Filed: December 16, 2004
    Publication date: May 12, 2005
    Inventors: James Miller, Kevin McCullough, E. Mikhail Sagal, Jeffrey Panek
  • Publication number: 20050095901
    Abstract: An electronic connector having a housing containing a circuit board with a heat-generating component, such as a photodiode or laser, is provided. The housing is molded over the circuit board and heat-generating component. The housing is made from a moldable, thermally conductive polymer composition containing a base polymer and thermally conductive filler material. Liquid crystal polymers can be used as the base polymer, and boron nitride particles and carbon fibers can be used as the thermally conductive filler materials. In one embodiment, the thermally conductive polymer composition includes 30 to 60% of a base polymer, 25% to 50% of a first thermally conductive filler material, and 10 to 25% of a second thermally conductive filler material. The molded housing is capable of dissipating heat from the heat-generating component. A method for making the electronic connector is also provided.
    Type: Application
    Filed: December 14, 2004
    Publication date: May 5, 2005
    Inventors: James Miller, E. Sagal, Kevin McCullough
  • Patent number: 6886625
    Abstract: The present invention discloses a net-shape molded elastomeric heat-dissipating device that includes an integrally formed conformable interface surface. A base elastomeric matrix material is loaded with thermally conductive filler and injected into a mold cavity to form the completed device. Further, a layer of thermally conductive pressure sensitive adhesive material is applied to the conformable interface surface to allow the device to be securely fastened to a heat-generating surface. The present invention provides superior sealing and elimination of voids and air gaps that are typically found between the thermal transfer surfaces thereby facilitating enhanced thermal transfer properties. In addition, the present invention provides a method of manufacturing an elastomeric heat sink device as described above.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: May 3, 2005
    Assignee: Cool Options, Inc.
    Inventors: E. Mikhail Sagal, Jeffrey Panek, Kevin A. McCullough
  • Patent number: 6868602
    Abstract: A structural frame (12) for dissipating heat from an electronic device (10) is provided. The structural frame (12), to which an electronic circuit board (14) containing a heat generating electronic component (16) is mounted, is injection molded from a thermally conductive, net-shape moldable polymer composition. The electronic component (16) that is within the device (10) is in thermal communication with the structural frame (12), so that the heat generated within the device (10) is transferred to the frame (14) and dissipated from the heat-generating device (10). An outer case (22) may be mounted to the frame (12) to finish the device (10) or the frame (12) may serve as all or a part of the outer device case (22) as well. In addition, the structural frame (12) has characteristics that may be engineered and used to shield the device (10) from electromagnetic interference.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: March 22, 2005
    Assignee: Cool Options, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6863729
    Abstract: A new die insert for an extrusion machine and a method of using the invention that includes a continuous strand of fiber reinforcing material to be statically drawn directly to the center of the molten flow of polymer base matrix is provided. The insert is placed in line with the discharge end of an injection molding apparatus. A molten flow of polymer base matrix proceeds in a straight linear fashion through the die. A fiber feed tube is centered on the interior of the die. As the polymer flows past the feed tube the molten polymer draws a continuous strand of fiber reinforcing into the center of the flow. The polymer is then extruded and cooled and the extrusion is further pelletized to produce injection molding feed stock material having continuous fiber reinforcing. The result provides a continuous extrusion process that allows the formation of a continuous fiber-reinforced product employing brittle fibers in one-step process.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: March 8, 2005
    Assignee: Cool Options, Inc.
    Inventor: Kevin A. McCullough
  • Publication number: 20050028359
    Abstract: The present invention discloses a method of providing an integral thermal interface on an interface surface of a heat dissipation device, such as a heat sink. In accordance with the present invention, the phase change material is applied directly onto the interface surface of the heat sink to form an integral interface layer directly on the heat sink during the manufacturing process. This process includes the steps of providing a heat dissipating device having an interface surface, liquefying the phase change material at a controlled temperature so as to decrease the material viscosity to a flowable form, applying the liquefied phase change material directly onto the mating surface of the heat dissipating device either by directly dispensing the material, screen printing or stencil printing and cooling the material causing it to cure on the surface of the heat dissipating device.
    Type: Application
    Filed: September 2, 2004
    Publication date: February 10, 2005
    Inventor: Kevin McCullough
  • Patent number: 6851869
    Abstract: The electronic connector (10) includes an improved heat dissipating housing for cooling heat generating devices located within the connector (10). The electronic connector (10) of the present invention enables the cost-effective cooling of electronic devices (22, 24) within the connector (10) while realizing superior thermal conductivity and improved electromagnetic shielding. A method of forming an electronic connector (10) that includes the steps of first providing a heat generating electronic component (22, 24) capable of electronically coupling two data devices together having a first port (16a) and a second port (16b). This component (22, 24) is typically mounted or installed into a circuit board (20). An outer housing (12) of moldable thermally conductive polymer material (102, 202, 302, 402) is overmolded around the heat generating electronic component (22, 24) leaving the first port (16a) and the second port (16b) of connector (10) exposed.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: February 8, 2005
    Assignee: Cool Options, Inc.
    Inventors: James D. Miller, E. Mikhail Sagal, Kevin A. McCullough