Patents by Inventor Kirk D. Peterson

Kirk D. Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180358366
    Abstract: A method fabricates a lateral non-volatile storage cell. The lateral non-volatile storage cell includes a first transistor including a first transistor body formed on a dielectric layer. The first transistor includes a source region and drain region on opposite sides of the first transistor body. A second transistor is laterally adjacent to the first transistor and includes a second transistor body, parallel with the first transistor body, formed on the dielectric layer. A first layer of gate oxide of a first thickness is formed over the first transistor body, and a second layer of gate oxide of a second thickness is formed over a portion of the second transistor body. The first thickness and the second thickness are different. A floating gate is formed over the first layer of gate oxide, the second layer of gate oxide, and the dielectric layer.
    Type: Application
    Filed: November 9, 2017
    Publication date: December 13, 2018
    Inventors: John B. DeForge, John J. Ellis-Monaghan, Terence B. Hook, Kirk D. Peterson
  • Patent number: 10153291
    Abstract: A method fabricates a lateral non-volatile storage cell. The lateral non-volatile storage cell includes a first transistor including a first transistor body formed on a dielectric layer. The first transistor includes a source region and drain region on opposite sides of the first transistor body. A second transistor is laterally adjacent to the first transistor and includes a second transistor body, parallel with the first transistor body, formed on the dielectric layer. A first layer of gate oxide of a first thickness is formed over the first transistor body, and a second layer of gate oxide of a second thickness is formed over a portion of the second transistor body. The first thickness and the second thickness are different. A floating gate is formed over the first layer of gate oxide, the second layer of gate oxide, and the dielectric layer.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: December 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John B. DeForge, John J. Ellis-Monaghan, Terence B. Hook, Kirk D. Peterson
  • Patent number: 10141472
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: November 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Patent number: 10121912
    Abstract: Methods and structures of photodetectors are described. The structure may include a readout integrated circuit substrate having an internally integrated capacitor. The structure may additionally include an external capacitor overlying the readout integrated circuit substrate. The external capacitor may be coupled with the internally integrated capacitor of the readout integrated circuit substrate, and configured to operate in parallel with the internally integrated capacitor of the readout integrated circuit substrate. The structure may also include a detector overlying the external capacitor.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: November 6, 2018
    Assignee: DRS Network & Imaging Systems, LLC
    Inventors: Kirk D. Peterson, Eugene E. Krueger, Cari A. Ossenfort, Daniel B. Jardine, George D. Skidmore
  • Patent number: 10114071
    Abstract: According to an embodiment, a testing mechanism determines a status of circuits within a chip by analyzing fail signatures on a by-level basis to identify a high probability defect area within the chip. The testing mechanism further determines a whether functionally needed circuitry of the chip intersects with the high probability defect area within the chip and determines the status of the circuits in response to the determining of whether the functionally needed circuitry intersects with the high probability defect area.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kirk D. Peterson, Alain G. Rwabukamba, Andrew A. Turner
  • Patent number: 10109639
    Abstract: A method fabricates a lateral non-volatile storage cell. The lateral non-volatile storage cell includes a first transistor including a first transistor body formed on a dielectric layer. The first transistor includes a source region and drain region on opposite sides of the first transistor body. A second transistor is laterally adjacent to the first transistor and includes a second transistor body, parallel with the first transistor body, formed on the dielectric layer. A first layer of gate oxide of a first thickness is formed over the first transistor body, and a second layer of gate oxide of a second thickness is formed over a portion of the second transistor body. The first thickness and the second thickness are different. A floating gate is formed over the first layer of gate oxide, the second layer of gate oxide, and the dielectric layer.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John B. DeForge, John J. Ellis-Monaghan, Terence B. Hook, Kirk D. Peterson
  • Patent number: 10090330
    Abstract: A method for fabricating a fully depleted silicon on insulator (FDSOI) device is described. A charge trapping layer in a buried oxide layer is provided on a semiconductor substrate. A backgate well in the semiconductor substrate is provided under the charge trapping layer. A device structure including a gate structure, source and drain regions is disposed over the buried oxide layer. A charge is trapped in the charge trapping layer. The threshold voltage of the device is partially established by the charge trapped in the charge trapping layer. Different aspects of the invention include the structure of the FDSOI device and a method of tuning the charge trapped in the charge trapping layer of the FDSOI device.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 2, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Terence B. Hook, Kirk D. Peterson
  • Patent number: 10083862
    Abstract: A method of forming a protective liner between a gate dielectric and a gate contact. The method may include; forming a finFET having a replacement metal gate (RMG) on one or more fins, the RMG includes a gate dielectric wrapped around a metal gate, an outer liner is on the sidewalls of the gate dielectric and on the fins; forming a gate contact trench by recessing the gate dielectric and the outer liner below a top surface of the metal gate in a gate contact region; forming a protective trench by further recessing the gate dielectric below a top surface of the outer liner; filling the protective trench with a protective liner; and forming a gate contact in the gate contact trench, where the protective liner is between the gate dielectric and the gate contact.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Junli Wang
  • Publication number: 20180269348
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 20, 2018
    Inventors: John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Mark D. JAFFE, Kirk D. PETERSON
  • Publication number: 20180261543
    Abstract: A method of increasing the surface area of a contact to an electrical device that in one embodiment includes forming a contact stud extending through an intralevel dielectric layer to a component of the electrical device, and selectively forming a contact region on the contact stud. The selectively formed contact region has an exterior surface defined by a curvature and has a surface area that is greater than a surface area of the contact stud. An interlevel dieletric layer is formed on the intralevel dielectric layer, wherein an interlevel contact extends through the interlevel dielectric layer into direct contact with the selectively formed contact region.
    Type: Application
    Filed: May 14, 2018
    Publication date: September 13, 2018
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Terry A. Spooner, Junli Wang
  • Publication number: 20180254374
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Inventors: John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Mark D. JAFFE, Kirk D. PETERSON
  • Patent number: 10050171
    Abstract: Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: August 14, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson
  • Publication number: 20180203341
    Abstract: After printing common features from a primary mask into a photoresist layer located over a substrate, a functional feature which is suitable for changing functionalities or the configurations of the common features according to a chip design is selected from a library of additional functional features in a secondary mask. The selected functional feature from the secondary mask is printed into the photoresist layer to modify the common features that already exist in the photoresist layer. The selection and printing of functional feature processes can be repeated until a final image corresponding to the chip design is obtained in the photoresist layer.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 19, 2018
    Inventors: John B. Deforge, Bassem M. Hamieh, Terence B. Hook, Theresa A. Newton, Kirk D. Peterson
  • Patent number: 10014255
    Abstract: A method of increasing the surface area of a contact to an electrical device that in one embodiment includes forming a contact stud extending through an intralevel dielectric layer to a component of the electrical device, and selectively forming a contact region on the contact stud. The selectively formed contact region has an exterior surface defined by a curvature and has a surface area that is greater than a surface area of the contact stud. An interlevel dieletric layer is formed on the intralevel dielectric layer, wherein an interlevel contact extends through the interlevel dielectric layer into direct contact with the selectively formed contact region.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: July 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Terry A. Spooner, Junli Wang
  • Publication number: 20180182778
    Abstract: A method for fabricating a fully depleted silicon on insulator (FDSOI) device is described. A charge trapping layer in a buried oxide layer is provided on a semiconductor substrate. A backgate well in the semiconductor substrate is provided under the charge trapping layer. A device structure including a gate structure, source and drain regions is disposed over the buried oxide layer. A charge is trapped in the charge trapping layer. The threshold voltage of the device is partially established by the charge trapped in the charge trapping layer. Different aspects of the invention include the structure of the FDSOI device and a method of tuning the charge trapped in the charge trapping layer of the FDSOI device.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Inventors: John J. Ellis-Monaghan, Terence B. Hook, Kirk D. Peterson
  • Patent number: 9997408
    Abstract: A method of tailoring BEOL RC parametrics to improve chip performance. According to the method, an integrated circuit design on an integrated circuit chip is analyzed. The analysis comprises calculating Vmax for vias and metal lines in the integrated circuit design over a range of sizes for the vias and the metal lines. Predicted use voltage for applications on the integrated circuit chip is determined. The size or the location of at least one of the vias and the metal lines is tailored based on performance parameters of the integrated circuit chip.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, John E. Sheets, II, Terry A. Spooner
  • Publication number: 20180158731
    Abstract: A method of tailoring BEOL RC parametrics to improve chip performance. According to the method, an integrated circuit design on an integrated circuit chip is analyzed. The analysis comprises calculating Vmax for vias and metal lines in the integrated circuit design over a range of sizes for the vias and the metal lines. Predicted use voltage for applications on the integrated circuit chip is determined. The size or the location of at least one of the vias and the metal lines is tailored based on performance parameters of the integrated circuit chip.
    Type: Application
    Filed: February 6, 2018
    Publication date: June 7, 2018
    Applicant: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, John E. Sheets, II, Terry A. Spooner
  • Patent number: 9952651
    Abstract: A system for adjusting a frequency of a processor is disclosed herein. The system includes a processor and a memory, where the memory includes a program configured to adjust a frequency of a multi-core processor. The operations include determining a total current and a temperature of the multi-core processor and estimating a leakage current for the multi-core processor. The operations also include calculating a switching current by subtracting the leakage current from the total current and calculating an effective switching capacitance based at least in part on the switching current. The operations also include calculating a workload activity factor by dividing the effective switching capacitance by a predetermined effective switching capacitance stored in vital product data, and enforcing a turbo frequency limit of the multi-core processor based on the workload activity factor.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Malcolm S. Allen-Ware, Michael S. Floyd, Joshua D. Friedrich, Charles R. Lefurgy, Kirk D. Peterson, Karthick Rajamani, Srinivasan Ramani, Todd J. Rosedahl, Gregory S. Still, Brian W. Thompto, Victor Zyuban
  • Publication number: 20180096858
    Abstract: Embodiments are directed to a method for repairing features of a host semiconductor wafer. The method includes forming a feature of the host semiconductor wafer, wherein the feature includes a first conductive material and a surface having a planar region and non-planar regions. The method further includes forming a metal conductive liner over the non-planar regions. The method further includes applying a second conductive material metal layer over said the conductive liner. The method further includes recessing the second conductive material to be substantially planar with the planar region.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, John E. Sheets, II
  • Publication number: 20180096902
    Abstract: Embodiments are directed to a method for repairing features of a host semiconductor wafer. The method includes forming a feature of the host semiconductor wafer, wherein the feature includes a first conductive material and a surface having a planar region and non-planar regions. The method further includes forming a metal conductive liner over the non-planar regions. The method further includes applying a second conductive material metal layer over said the conductive liner. The method further includes recessing the second conductive material to be substantially planar with the planar region.
    Type: Application
    Filed: February 23, 2017
    Publication date: April 5, 2018
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, John E. Sheets, II