Patents by Inventor Kosei Noda

Kosei Noda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190221670
    Abstract: To provide a highly reliable semiconductor device that is suitable for miniaturization and higher density. A semiconductor device includes a first electrode including a protruding portion, a first insulator over the protruding portion, a second insulator covering the first electrode and the first insulator, and a second electrode over the second insulator. The second electrode includes a first region which overlaps with the first electrode with the first insulator and the second insulator provided therebetween and a second region which overlaps with the first electrode with the second insulator provided therebetween. The peripheral portion of the second electrode is provided in the first region.
    Type: Application
    Filed: March 28, 2019
    Publication date: July 18, 2019
    Inventor: Kosei Noda
  • Patent number: 10319744
    Abstract: An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 11, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Atsushi Hirose, Masashi Tsubuku, Kosei Noda
  • Patent number: 10319955
    Abstract: A power storage device with high capacity per unit volume, a flexible power storage device with a novel structure, a repeatedly bendable power storage device, a highly reliable power storage device, or a long-life power storage device is provided. The power storage device includes an inner structure and an exterior body surrounding the inner structure. The inner structure includes a positive electrode and a negative electrode. The exterior body includes a first film containing titanium and one or more elements selected from niobium, tantalum, vanadium, zirconium, and hafnium. It is preferable that the first film further contain one or more elements selected from molybdenum, chromium, and aluminum.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: June 11, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kosei Noda
  • Patent number: 10310348
    Abstract: A liquid crystal display device includes: a driver circuit portion; a pixel portion; a signal generation circuit for generating a control signal for driving the driver circuit portion and an image signal which is supplied to the pixel portion; a memory circuit; a comparison circuit for detecting a difference of image signals for a series of frame periods among image signals stored for respective frame periods in the memory circuit; a selection circuit which selects and outputs the image signals for the series of frame periods when the difference is detected in the comparison circuit; and a display control circuit which supplies the control signal and the image signals output from the selection circuit, to the driver circuit portion when the difference is detected in the comparison circuit, and stops supplying the control signal to the driver circuit portion when the difference is not detected in the comparison circuit.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: June 4, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Hiroyuki Miyake, Masashi Tsubuku, Kosei Noda
  • Publication number: 20190115455
    Abstract: A semiconductor device is manufactured using a transistor in which an oxide semiconductor is included in a channel region and variation in electric characteristics due to a short-channel effect is less likely to be caused. The semiconductor device includes an oxide semiconductor film having a pair of oxynitride semiconductor regions including nitrogen and an oxide semiconductor region sandwiched between the pair of oxynitride semiconductor regions, a gate insulating film, and a gate electrode provided over the oxide semiconductor region with the gate insulating film positioned therebetween. Here, the pair of oxynitride semiconductor regions serves as a source region and a drain region of the transistor, and the oxide semiconductor region serves as the channel region of the transistor.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 18, 2019
    Inventors: Yuta ENDO, Toshinari SASAKI, Kosei NODA
  • Patent number: 10249765
    Abstract: To provide a highly reliable semiconductor device that is suitable for miniaturization and higher density. A semiconductor device includes a first electrode including a protruding portion, a first insulator over the protruding portion, a second insulator covering the first electrode and the first insulator, and a second electrode over the second insulator. The second electrode includes a first region which overlaps with the first electrode with the first insulator and the second insulator provided therebetween and a second region which overlaps with the first electrode with the second insulator provided therebetween. The peripheral portion of the second electrode is provided in the first region.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 2, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kosei Noda
  • Publication number: 20190088785
    Abstract: An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit such as an LSI, a CPU, or a memory is manufactured using a thin film transistor in which a channel formation region is formed using an oxide semiconductor which becomes an intrinsic or substantially intrinsic semiconductor by removing impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than that of a silicon semiconductor. With use of a thin film transistor using a highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device with low power consumption due to leakage current can be realized.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 21, 2019
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Hiroyuki MIYAKE, Kei TAKAHASHI, Kouhei TOYOTAKA, Masashi TSUBUKU, Kosei NODA, Hideaki KUWABARA
  • Patent number: 10229936
    Abstract: An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: March 12, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroki Ohara, Toshinari Sasaki, Kosei Noda, Hideaki Kuwabara
  • Patent number: 10211344
    Abstract: A logic circuit includes a thin film transistor having a channel formation region formed using an oxide semiconductor, and a capacitor having terminals one of which is brought into a floating state by turning off the thin film transistor. The oxide semiconductor has a hydrogen concentration of 5×1019 (atoms/cm3) or less and thus substantially serves as an insulator in a state where an electric field is not generated. Therefore, off-state current of a thin film transistor can be reduced, leading to suppressing the leakage of electric charge stored in a capacitor, through the thin film transistor. Accordingly, a malfunction of the logic circuit can be prevented. Further, the excessive amount of current which flows in the logic circuit can be reduced through the reduction of off-state current of the thin film transistor, resulting in low power consumption of the logic circuit.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: February 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Masashi Tsubuku, Kosei Noda
  • Publication number: 20190035819
    Abstract: An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 31, 2019
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Atsushi HIROSE, Masashi TSUBUKU, Kosei NODA
  • Patent number: 10192997
    Abstract: A highly reliable semiconductor device having stable electric characteristics is provided by suppressing, in a transistor including an oxide semiconductor film, diffusion of indium into an insulating film in contact with the oxide semiconductor film and improving the characteristics of the interface between the oxide semiconductor film and the insulating film. In an oxide semiconductor film containing indium, the indium concentration at a surface is decreased, thereby preventing diffusion of indium into an insulating film on and in contact with the oxide semiconductor film. By decreasing the indium concentration at the surface of the oxide semiconductor film, a layer which does not substantially contain indium can be formed at the surface. By using this layer as part of the insulating film, the characteristics of the interface between the oxide semiconductor film and the insulating film in contact with the oxide semiconductor film are improved.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: January 29, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kosei Noda, Noriyoshi Suzuki
  • Patent number: 10186603
    Abstract: It is an object to provide a semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability. An oxide semiconductor film serving as a channel formation region of a transistor is formed by a sputtering method at a temperature higher than 200° C., so that the number of water molecules eliminated from the oxide semiconductor film can be 0.5/nm3 or less according to thermal desorption spectroscopy. A substance including a hydrogen atom such as hydrogen, water, a hydroxyl group, or hydride which causes variation in the electric characteristics of a transistor including an oxide semiconductor is prevented from entering the oxide semiconductor film, whereby the oxide semiconductor film can be highly purified and made to be an electrically i-type (intrinsic) semiconductor.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: January 22, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshinari Sasaki, Kosei Noda
  • Patent number: 10170598
    Abstract: An object is to provide a semiconductor device including an oxynitride semiconductor whose carrier density is controlled. By introducing controlled nitrogen into an oxide semiconductor layer, a transistor in which an oxynitride semiconductor having desired carrier density and on characteristics is used for a channel can be manufactured. Further, with the use of the oxynitride semiconductor, even when a low resistance layer or the like is not provided between an oxynitride semiconductor layer and a source electrode and between the oxynitride semiconductor layer and a drain electrode, favorable contact characteristics can be exhibited.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: January 1, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda
  • Publication number: 20180364510
    Abstract: A liquid crystal display device includes: a driver circuit portion; a pixel portion; a signal generation circuit for generating a control signal for driving the driver circuit portion and an image signal which is supplied to the pixel portion; a memory circuit; a comparison circuit for detecting a difference of image signals for a series of frame periods among image signals stored for respective frame periods in the memory circuit; a selection circuit which selects and outputs the image signals for the series of frame periods when the difference is detected in the comparison circuit; and a display control circuit which supplies the control signal and the image signals output from the selection circuit, to the driver circuit portion when the difference is detected in the comparison circuit, and stops supplying the control signal to the driver circuit portion when the difference is not detected in the comparison circuit.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Hiroyuki MIYAKE, Masashi TSUBUKU, Kosei NODA
  • Patent number: 10153360
    Abstract: A semiconductor device is manufactured using a transistor in which an oxide semiconductor is included in a channel region and variation in electric characteristics due to a short-channel effect is less likely to be caused. The semiconductor device includes an oxide semiconductor film having a pair of oxynitride semiconductor regions including nitrogen and an oxide semiconductor region sandwiched between the pair of oxynitride semiconductor regions, a gate insulating film, and a gate electrode provided over the oxide semiconductor region with the gate insulating film positioned therebetween. Here, the pair of oxynitride semiconductor regions serves as a source region and a drain region of the transistor, and the oxide semiconductor region serves as the channel region of the transistor.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: December 11, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda
  • Patent number: 10115743
    Abstract: An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 30, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Atsushi Hirose, Masashi Tsubuku, Kosei Noda
  • Publication number: 20180301476
    Abstract: To reduce a leakage current of a transistor so that malfunction of a logic circuit can be suppressed. The logic circuit includes a transistor which includes an oxide semiconductor layer having a function of a channel formation layer and in which an off current is 1×10?13A or less per micrometer in channel width. A first signal, a second signal, and a third signal that is a clock signal are input as input signals. A fourth signal and a fifth signal whose voltage states are set in accordance with the first to third signals which have been input are output as output signals.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 18, 2018
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Masashi TSUBUKU, Kosei NODA
  • Patent number: 10103275
    Abstract: An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit included in an LSI, a CPU, or a memory is manufactured using the transistor which is formed using an oxide semiconductor which is an intrinsic or substantially intrinsic semiconductor obtained by removal of impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than a silicon semiconductor, and is formed over a semiconductor substrate. With the transistor which is formed over the semiconductor substrate and includes the highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device whose power consumption due to leakage current is low can be realized.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 16, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Hiroyuki Miyake, Kei Takahashi, Kouhei Toyotaka, Masashi Tsubuku, Kosei Noda, Hideaki Kuwabara
  • Patent number: 10084048
    Abstract: A semiconductor device with favorable electrical characteristics is provided. Alternatively, a semiconductor device with a high on-state current is provided. Alternatively, a semiconductor device that is suitable for miniaturization is provided. A semiconductor device includes an oxide semiconductor, an insulating film, a gate insulating film, and a gate electrode. The oxide semiconductor includes a first portion and a second portion over the first portion. The insulating film includes a region in contact with a side surface of the first portion. The gate electrode includes a region that covers the second portion with the gate insulating film provided therebetween.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: September 25, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kosei Noda
  • Patent number: 10079312
    Abstract: A metal element of a metal film is introduced into the oxide semiconductor film by performing heat treatment in the state where the oxide semiconductor film is in contact with the metal film, so that a low-resistance region having resistance lower than that of a channel formation region is formed. A region of the metal film, which is in contact with the oxide semiconductor film, becomes a metal oxide insulating film by the heat treatment. After that, an unnecessary metal film is removed. Thus, the metal oxide insulating film can be formed over the low-resistance region.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: September 18, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yukie Suzuki, Kosei Noda, Yoshiaki Oikawa