Patents by Inventor Kun-Hsien Lin

Kun-Hsien Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12136621
    Abstract: A bidirectional electrostatic discharge protection device includes at least one bipolar junction transistor and at least one silicon-controlled rectifier. The silicon-controlled rectifier is coupled to the bipolar junction transistor in series. The absolute value of the breakdown voltage of the bipolar junction transistor is lower than that of the silicon-controlled rectifier and the absolute value of the holding voltage of the bipolar junction transistor is higher than that of the silicon-controlled rectifier when an electrostatic discharge voltage is applied to the bipolar junction transistor and the silicon-controlled rectifier.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: November 5, 2024
    Assignee: Amazing Microelectronic Corp.
    Inventors: Chih-Wei Chen, Mei-Lian Fan, Kun-Hsien Lin
  • Patent number: 12136622
    Abstract: A bidirectional electrostatic discharge protection device includes a first transient voltage suppressor chip, a second transient voltage suppressor chip, a first conductive wire, and a second conductive wire. The first transient voltage suppressor chip includes a first diode and a first bipolar junction transistor. The first diode and the first bipolar junction transistor are electrically connected to a first pin. The second transient voltage suppressor chip includes a second diode and a second bipolar junction transistor. The second diode and the second bipolar junction transistor are electrically connected to a second pin. The first conductive wire is electrically connected between the first diode and the second bipolar junction transistor. The second conductive wire is electrically connected between the second diode and the first bipolar junction transistor.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: November 5, 2024
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tun-Chih Yang, Zi-Ping Chen, Kun-Hsien Lin
  • Patent number: 12107084
    Abstract: A multi-channel transient voltage suppression device includes a semiconductor substrate, a semiconductor layer, at least two bidirectional transient voltage suppression structures, and at least one isolation trench. The semiconductor substrate, having a first conductivity type, is coupled to a grounding terminal. The semiconductor layer, having a second conductivity type opposite to the first conductivity type, is formed on the semiconductor substrate. The bidirectional transient voltage suppression structures are formed in the semiconductor layer. Each bidirectional transient voltage suppression structure is coupled to an input/output (I/O) pin and the grounding terminal. The isolation trench is formed in the semiconductor substrate and the semiconductor layer and formed between the bidirectional transient voltage suppression structures. The isolation trench has a height larger than the height of the semiconductor layer and surrounds the bidirectional transient voltage suppression structures.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: October 1, 2024
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Tun-Chih Yang, Zi-Ping Chen, Kun-Hsien Lin
  • Publication number: 20240243119
    Abstract: A transient voltage suppression device includes at least one N-type lightly-doped structure, a first P-type well, a second P-type well, a first N-type heavily-doped area, and a second N-type heavily-doped area. The first P-type well and the second P-type well are formed in the N-type lightly-doped structure. The first N-type heavily-doped area and the second N-type heavily-doped area are respectively formed in the first P-type well and the second P-type well. The doping concentration of the first P-type well is higher than that of the second P-type well. The first P-type well and the second P-type well can be replaced with P-type lightly-doped wells respectively having P-type heavily-doped areas under the N-type heavily-doped areas.
    Type: Application
    Filed: January 18, 2023
    Publication date: July 18, 2024
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Chih-Wei CHEN, Kuan-Yu LIN, Mei-Lian FAN, KUN-HSIEN LIN
  • Publication number: 20240234408
    Abstract: An ESD protection device includes an N-type semiconductor substrate, a P-type semiconductor layer, a first N-type well, a P-type well, a second N-type well, a first P-type heavily-doped area, a first N-type heavily-doped area, and a second P-type heavily-doped area. The semiconductor layer is formed on the substrate. The wells are formed in the semiconductor layer. The second N-type well directly touches the substrate. The first P-type heavily-doped area is formed in the first N-type well. The first N-type heavily-doped area and the second P-type heavily-doped area are formed in the P-type well. The second P-type heavily-doped area is coupled to the second N-type well through an external conductive wire and replaced with a second N-type heavily-doped area.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 11, 2024
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: KUN-HSIEN LIN, Zi-Ping CHEN, Tun-Chih Yang
  • Patent number: 11978809
    Abstract: A transient voltage suppression device includes at least one P-type lightly-doped structure and at least one electrostatic discharge structure. The electrostatic discharge structure includes an N-type lightly-doped well, an N-type well, a first P-type heavily-doped area, and a first N-type heavily-doped area. The N-type lightly-doped well is formed in the P-type lightly-doped structure. The N-type well is formed in the N-type lightly-doped well. The doping concentration of the N-type lightly-doped well is less than that of the N-type well. The first P-type heavily-doped area is formed in the N-type well. The first N-type heavily-doped area is formed in the P-type lightly-doped structure.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: May 7, 2024
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Chih-Wei Chen, Kuan-Yu Lin, Kun-Hsien Lin
  • Publication number: 20240110948
    Abstract: A method for producing a probe card comprises the steps of: providing a carrier board, wherein a surface of the carrier board has at least one probe guiding portion; and generating a probe on the probe guiding portion by performing additive manufacturing with a conductive material directly on the at least one probe guiding portion to generate the probe, wherein the additive manufacturing comprises directly layering the conductive material on the probe guiding portion.
    Type: Application
    Filed: February 18, 2022
    Publication date: April 4, 2024
    Inventors: Kun-Hsien LIN, Edgar HEPP, Wabe KOELMANS, Patrik SCHUERCH
  • Publication number: 20230420576
    Abstract: A transient voltage suppression device includes at least one P-type lightly-doped structure and at least one electrostatic discharge structure. The electrostatic discharge structure includes an N-type lightly-doped well, an N-type well, a first P-type heavily-doped area, and a first N-type heavily-doped area. The N-type lightly-doped well is formed in the P-type lightly-doped structure. The N-type well is formed in the N-type lightly-doped well. The doping concentration of the N-type lightly-doped well is less than that of the N-type well. The first P-type heavily-doped area is formed in the N-type well. The first N-type heavily-doped area is formed in the P-type lightly-doped structure.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Chih-Wei CHEN, Kuan-Yu LIN, Kun-Hsien LIN
  • Patent number: 11797906
    Abstract: State estimation and sensor fusion switching methods for autonomous vehicles thereof are provided. The autonomous vehicle includes at least one sensor, at least one actuator and a processor, and is configured to transfer and transport an object. In the method, a task instruction for moving the object and data required for executing the task instruction are received. The task instruction is divided into a plurality of work stages according to respective mapping locations, and each of the work stages is mapped to one of a transport state and an execution state, so as to establish a semantic hierarchy. A current location of the autonomous vehicle is detected by using the sensor and mapped to one of the work stages in the semantic hierarchy, so as to estimate a current state of the autonomous vehicle.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 24, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Xin-Lan Liao, Kun-Hsien Lin, Lih-Guong Jang, Wei-Liang Wu, Yi-Yuan Chen
  • Publication number: 20230223398
    Abstract: A bidirectional electrostatic discharge protection device includes at least one bipolar junction transistor and at least one silicon-controlled rectifier. The silicon-controlled rectifier is coupled to the bipolar junction transistor in series. The absolute value of the breakdown voltage of the bipolar junction transistor is lower than that of the silicon-controlled rectifier and the absolute value of the holding voltage of the bipolar junction transistor is higher than that of the silicon-controlled rectifier when an electrostatic discharge voltage is applied to the bipolar junction transistor and the silicon-controlled rectifier.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 13, 2023
    Inventors: CHIH-WEI CHEN, MEI-LIAN FAN, KUN-HSIEN LIN
  • Publication number: 20230215864
    Abstract: A bidirectional electrostatic discharge protection device includes a first transient voltage suppressor chip, a second transient voltage suppressor chip, a first conductive wire, and a second conductive wire. The first transient voltage suppressor chip includes a first diode and a first bipolar junction transistor. The first diode and the first bipolar junction transistor are electrically connected to a first pin. The second transient voltage suppressor chip includes a second diode and a second bipolar junction transistor. The second diode and the second bipolar junction transistor are electrically connected to a second pin. The first conductive wire is electrically connected between the first diode and the second bipolar junction transistor. The second conductive wire is electrically connected between the second diode and the first bipolar junction transistor.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Inventors: Tun-Chih YANG, Zi-Ping CHEN, Kun-Hsien LIN
  • Publication number: 20230168298
    Abstract: A diode test module and method applicable to the diode test module are provided. A substrate having first conductivity type and an epitaxial layer having second conductivity type on the substrate are formed. A well region having first conductivity type is formed in the epitaxial layer. A first and second heavily doped region having second conductivity type are theoretically formed in the well and connected to a first and second I/O terminal, respectively. Isolation trench is formed there in between for electrical isolation. A monitor cell comprising a third and fourth heavily doped region is provided in a current conduction path between the first and second I/O terminal when inputting an operation voltage. By employing the monitor cell, the invention achieves to determine if the well region is missing by measuring whether a leakage current is generated without additional testing equipment and time for conventional capacitance measurements.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 1, 2023
    Inventors: CHIH-TING YEH, SUNG CHIH HUANG, KUN-HSIEN LIN, CHE-HAO CHUANG
  • Patent number: 11652097
    Abstract: A transient voltage suppression device includes a P-type semiconductor layer, a first N-type well, a first N-type heavily-doped area, a first P-type heavily-doped area, a second P-type heavily-doped area, and a second N-type heavily-doped area. The first N-type well and the second N-type heavily-doped area are formed in the layer. The first P-type heavily-doped area is formed in the first N-type well. The first P-type heavily-doped area is spaced from the bottom of the first N-type well. The second P-type heavily-doped area is formed within the first N-type well and spaced from the sidewall of the first N-type well. The second P-type heavily-doped area is formed between the first P-type heavily-doped area and the second N-type heavily-doped area.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 16, 2023
    Assignee: AMAZING MICROELECTRONIC CORP.
    Inventors: Tun-Chih Yang, Zi-Ping Chen, Kun-Hsien Lin
  • Patent number: 11631062
    Abstract: A voucher verification auxiliary method is provided, including: when a user device is approaching a voucher verification auxiliary device, generating an encryption key for the user device to encrypt voucher data with the encryption key to generate first encrypted data; reading and decrypting the first encrypted data to obtain the voucher data; encrypting the voucher data to generate and transmit second encrypted data to a verification center; decrypting the second encrypted data to obtain the voucher data, generating a verification result after verifying the voucher data, encrypting the verification result to become third encrypted data, and transmitting the third encrypted data back to the voucher verification auxiliary device; decrypting the third encrypted data to obtain the verification result; transmitting the verification result to a voucher receiving terminal. A voucher verification auxiliary device and a voucher verification auxiliary system are also provided.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: April 18, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi-Yuan Chen, Kun-Hsien Lin, Yi-Chang Wang, Yao-Tai Tseng
  • Publication number: 20230010423
    Abstract: A multi-channel transient voltage suppression device includes a semiconductor substrate, a semiconductor layer, at least two bidirectional transient voltage suppression structures, and at least one isolation trench. The semiconductor substrate, having a first conductivity type, is coupled to a grounding terminal. The semiconductor layer, having a second conductivity type opposite to the first conductivity type, is formed on the semiconductor substrate. The bidirectional transient voltage suppression structures are formed in the semiconductor layer. Each bidirectional transient voltage suppression structure is coupled to an input/output (I/O) pin and the grounding terminal. The isolation trench is formed in the semiconductor substrate and the semiconductor layer and formed between the bidirectional transient voltage suppression structures. The isolation trench has a height larger than the height of the semiconductor layer and surrounds the bidirectional transient voltage suppression structures.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 12, 2023
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Tun-Chih YANG, Zi-Ping CHEN, Kun-Hsien LIN
  • Publication number: 20220173093
    Abstract: A transient voltage suppression device includes a P-type semiconductor layer, a first N-type well, a first N-type heavily-doped area, a first P-type heavily-doped area, a second P-type heavily-doped area, and a second N-type heavily-doped area. The first N-type well and the second N-type heavily-doped area are formed in the layer. The first P-type heavily-doped area is formed in the first N-type well. The first P-type heavily-doped area is spaced from the bottom of the first N-type well. The second P-type heavily-doped area is formed within the first N-type well and spaced from the sidewall of the first N-type well. The second P-type heavily-doped area is formed between the first P-type heavily-doped area and the second N-type heavily-doped area.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 2, 2022
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Tun-Chih Yang, Zi-Ping CHEN, Kun-Hsien LIN
  • Patent number: 11349017
    Abstract: A bidirectional electrostatic discharge protection device and a method for fabricating the same is disclosed. The protection device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, a second semiconductor epitaxial layer, a heavily-doped area, and a lightly-doped area. The substrate, the heavily-doped area, and the lightly-doped area have a first conductivity type and the epitaxial layers have a second conductivity type. The first semiconductor epitaxial layer and the second semiconductor epitaxial layer are sequentially formed on the substrate, and the heavily-doped area and the lightly-doped area are formed in the second semiconductor epitaxial layer.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: May 31, 2022
    Assignee: Amazing Microelectronic Corp.
    Inventors: Chih-Wei Chen, Kun-Hsien Lin
  • Publication number: 20220052035
    Abstract: A vertical electrostatic discharge protection device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, a first doped buried layer, a second semiconductor epitaxial layer, a first doped well, at least one second doped well, and a first heavily-doped area. The epitaxial layers are stacked on the substrate. The first doped buried layer is formed in the first semiconductor epitaxial layer. The first doped well is formed in the second semiconductor epitaxial layer. The first doped well is formed on the first doped buried layer, and the doping concentration of the first doped well is lower than that of the first doped buried layer. The second doped well is formed in the second semiconductor epitaxial layer. The second doped well is adjacent to the first doped well.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 17, 2022
    Inventors: CHING-WEN WANG, CHIH-WEI CHEN, MEI-LIAN FAN, KUN-HSIEN LIN
  • Publication number: 20210399117
    Abstract: A bidirectional electrostatic discharge protection device and a method for fabricating the same is disclosed. The protection device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, a second semiconductor epitaxial layer, a heavily-doped area, and a lightly-doped area. The substrate, the heavily-doped area, and the lightly-doped area have a first conductivity type and the epitaxial layers have a second conductivity type. The first semiconductor epitaxial layer and the second semiconductor epitaxial layer are sequentially formed on the substrate, and the heavily-doped area and the lightly-doped area are formed in the second semiconductor epitaxial layer.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: CHIH-WEI CHEN, KUN-HSIEN LIN
  • Publication number: 20210188315
    Abstract: State estimation and sensor fusion switching methods for autonomous vehicles thereof are provided. The autonomous vehicle includes at least one sensor, at least one actuator and a processor, and is configured to transfer and transport an object. In the method, a task instruction for moving the object and data required for executing the task instruction are received. The task instruction is divided into a plurality of work stages according to respective mapping locations, and each of the work stages is mapped to one of a transport state and an execution state, so as to establish a semantic hierarchy. A current location of the autonomous vehicle is detected by using the sensor and mapped to one of the work stages in the semantic hierarchy, so as to estimate a current state of the autonomous vehicle.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Applicant: Industrial Technology Research Institute
    Inventors: Xin-Lan Liao, Kun-Hsien Lin, Lih-Guong Jang, Wei-Liang Wu, Yi-Yuan Chen