Patents by Inventor Kunihiko Nishi

Kunihiko Nishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6514796
    Abstract: A semiconductor chip (105′) and a substrate (102) are bonded with an organic adhesive layer (409) containing conductive particles (406), and a pad (405) and an electrode (412) are mutually, electrically connected through the conductive particles (406). The semiconductor chip (105′) is formed by contacting a semiconductor wafer (105) attached to a tape (107) with an etchant while rotating the semiconductor wafer (105) within an in-plane direction at a high speed or reciprocating the wafer (105) laterally to uniformly etch the semiconductor wafer (105) thereby reducing the thickness thereof, and dicing the thus reduced wafer. The resultant thin chip (105′) is hot-pressed by means of a heating head (106) for bonding on the substrate (102). In this way, a thin semiconductor chip can be formed stably at low costs and bonded on a substrate without causing any crack of the chip, thereby obtaining a semiconductor device which is unlikely to break owing to the bending stress from outside.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: February 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Mitsuo Usami, Kunihiro Tsubosaki, Kunihiko Nishi
  • Publication number: 20030017652
    Abstract: A semiconductor device comprising a semiconductor chip having an electrode on a circuit formation surface thereof, a flexible film having a lead attached thereto and electrically connected to said electrode of said semiconductor chip through a bump, a resin for covering said circuit formation surface of said semiconductor chip and a resin film for covering a back surface facing said circuit formation surface of said semiconductor chip.
    Type: Application
    Filed: September 24, 2002
    Publication date: January 23, 2003
    Inventors: Masako Sakaki, Kazunari Suzuki, Seiichi Ichihara, Tomoaki Kudaishi, Hisao Nakamura, Kunihiko Nishi, Hideki Tanaka, Yutaka Nakajima
  • Publication number: 20020179460
    Abstract: In surface packaging of thin resin packages such as resin molded memory ICs or the like, cracks of the package occur frequently at a solder reflow step where thermal impact is applied to the package because the resin has absorbed moisture before packaging.
    Type: Application
    Filed: July 30, 2002
    Publication date: December 5, 2002
    Inventors: Wahei Kitamura, Gen Murakami, Kunihiko Nishi
  • Publication number: 20020174627
    Abstract: In surface packaging of thin resin packages such as resin molded memory ICs or the like, cracks of the package occur frequently at a solder reflow step where thermal impact is applied to the package because the resin has absorbed moisture before packaging.
    Type: Application
    Filed: July 30, 2002
    Publication date: November 28, 2002
    Inventors: Wahei Kitamura, Gen Murakami, Kunihiko Nishi
  • Patent number: 6472727
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: October 29, 2002
    Assignees: Hitachi, Ltd., Hitahi Microcomputer System, Ltd, Hitachi ULSI Engineering Corp.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20020146864
    Abstract: To improve a reflow characteristic and realize leadlessness. A semiconductor device comprises a cross die pad which supports a semiconductor chip and in which an area of the region joined to the semiconductor chip is smaller than that of the outer size thereof being smaller than the rear surface of the semiconductor chip; wires connected to pads of the semiconductor chip; a plurality of inner leads which are arranged around the semiconductor chip and in which a silver plating layer is formed at a wire bonding area; molding resin for resin sealing the semiconductor chip; a plurality of outer leads exposed from the molding resin and in which a lead-free metallic layer is formed on a contact surface, wherein the flat surface size of the molding resin is formed to be equal to or less than 28 mm×28 mm and the thickness thereof is formed to be 1.4 mm or less, and thereby it is possible to improve a reflow characteristic and realize leadlessness.
    Type: Application
    Filed: April 4, 2002
    Publication date: October 10, 2002
    Inventors: Yoshinori Miyaki, Hiromichi Suzuki, Kazunari Suzuki, Kunihiko Nishi
  • Patent number: 6443298
    Abstract: In surface packaging of thin resin packages such as surface mount resin molded memory ICs or the like, cracks of the package occur frequently at a solder reflow step where thermal impact is applied to the package because the resin has absorbed moisture before packaging. To solve this problem, the devices are sealed, by heat-sealing, in a bag moisture-tight at an assembly step of the resin molded devices where the resin is still dry, and are taken out from the bags immediately before the execution of surface packaging. The devices are packaged in a moisture-proofing bag made of a laminate film, and a desiccant is sealed, by heat-sealing the bag, in the moisture-proofing bag together with the, e.g., surface mount semiconductor device having a plastic package encapsulating the semiconductor device. A caution is provided for the bag, that the devices should be presented from moisture absorption after opening the bag.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: September 3, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Wahei Kitamura, Gen Murakami, Kunihiko Nishi
  • Publication number: 20020070461
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2002
    Publication date: June 13, 2002
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20020068380
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2002
    Publication date: June 6, 2002
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20020066181
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2002
    Publication date: June 6, 2002
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20020064901
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2002
    Publication date: May 30, 2002
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6365439
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: April 2, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6355975
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: March 12, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6355500
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: March 12, 2002
    Assignee: Hitachi. Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6353255
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: March 5, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6342728
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: January 29, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6342726
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: January 29, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6326681
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: December 4, 2001
    Assignee: Hitachi, LTD
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Publication number: 20010035575
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: November 26, 1999
    Publication date: November 1, 2001
    Inventors: CHUICHI MIYAZAKI, YUKIHARU AKIYAMA, MASANORI SHIBAMOTO, TOMOAKI KUDAISHI, ICHIRO ANJOH, KUNIHIKO NISHI, ASAO NISHIMURA, HIDEKI TANAKA, RYOSUKE KIMOTO, KUNIHIRO TSUBOSAKI, AKIO HASEBE
  • Patent number: 6303982
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: October 16, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto