Patents by Inventor Kunliang Zhang

Kunliang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120235258
    Abstract: A method of forming a high performance magnetic tunnel junction (MTJ) is disclosed wherein the tunnel barrier includes at least three metal oxide layers. The tunnel barrier stack is partially built by depositing a first metal layer, performing a natural oxidation (NOX) process, depositing a second metal layer, and performing a second NOX process to give a MOX1/MOX2 configuration. An uppermost metal layer on the MOX2 layer is not oxidized until after the MTJ stack is completely formed and an annealing process is performed to drive unreacted oxygen in the MOX1 and MOX2 layers into the uppermost metal layer. In an alternative embodiment, a plurality of metal oxide layers is formed on the MOX1 layer before the uppermost metal layer is deposited. The resulting MTJ stack has an ultralow RA around 1 ohm-?m2 and maintains a high magnetoresistive ratio characteristic of a single metal oxide tunnel barrier layer.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8259420
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration where a top surface of FL1 is treated with a weak plasma etch is disclosed for achieving enhanced dR/R while maintaining low RA, and low ? in TMR or GMR sensors. The weak plasma etch removes less than about 0.2 Angstroms of FL1 and is believed to modify surface structure and possibly increase surface energy. FL1 may be CoFe, CoFe/CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb having a (+) ? value. FL2 may be CoFe, NiFe, or alloys thereof having a (?) ? value. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. When CoFeBTa is selected as insertion layer, the CoFeB:Ta ratio is from 1:1 to 4:1.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: September 4, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui Chuan Wang, Min Li, Kunliang Zhang
  • Publication number: 20120205757
    Abstract: The pinning field in an MR device was significantly improved by using the Ru 4A peak together with steps to minimize interfacial roughness of the ruthenium layer as well as boron and manganese diffusion into the ruthenium layer during manufacturing. This made it possible to anneal at temperatures as high as 340° C. whereby a high MR ratio could be simultaneously achieved.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 16, 2012
    Inventors: Kunliang Zhang, Shengyuan Wang, Tong Zhao, Min Li, Hui-Chuan Wang
  • Publication number: 20120193738
    Abstract: A high performance TMR sensor is fabricated by employing a free layer with a trilayer configurations represented by FeCo/CoFeB/CoB, FeCo/CoB/CoFeB, FeCo/CoFe/CoB, or FeCo/FeB/CoB may also be employed. Alternatively, CoNiFeB or CoNiFeBM formed by co-sputtering CoB with CoNiFe or CoNiFeM, respectively, where M is V, Ti, Zr, Nb, Hf, Ta, or Mo may be included in a composite free layer or as a single free layer in the case of CoNiFeBM. A 15 to 30% in improvement in TMR ratio over a conventional CoFe/NiFe free layer is achieved while maintaining low Hc and RA <3 ohm-um2. In bilayer or trilayer embodiments, magnetostriction (?) between ?5×10?6 and 5×10?6 is achieved by combining CoB (??) and one or more layers having a positive ?.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 8228643
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of nitrogen ions, nitrogen atoms, nitrogen plasma, and nitrogen radicals on the film submitted to the first treatment.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 24, 2012
    Assignees: Kabushiki Kaisha Toshiba, TDK Corporation
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Patent number: 8208219
    Abstract: A spin torque oscillator is described in which the conventional Field Generation Layer (FGL) is replaced by a bilayer, one of whose members exhibits perpendicular magnetic anisotropy while the other exhibits conventional in-plane anisotropy. Provided the layer with the perpendicular anisotropy is the one that is closest to the spacer layer, the device is able to generate microwaves at current densities as low as 1×108 A/cm2.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: June 26, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8202572
    Abstract: A method of forming a high performance magnetic tunnel junction (MTJ) is disclosed wherein the tunnel barrier includes at least three metal oxide layers. The tunnel barrier stack is partially built by depositing a first metal layer, performing a natural oxidation (NOX) process, depositing a second metal layer, and performing a second NOX process to give a MOX1/MOX2 configuration. An uppermost metal layer on the MOX2 layer is not oxidized until after the MTJ stack is completely formed and an annealing process is performed to drive unreacted oxygen in the MOX1 and MOX2 layers into the uppermost metal layer. In an alternative embodiment, a plurality of metal oxide layers is formed on the MOX1 layer before the uppermost metal layer is deposited. The resulting MTJ stack has an ultralow RA around 1 ohm-?m2 and maintains a high magnetoresistive ratio characteristic of a single metal oxide tunnel barrier layer.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: June 19, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8203389
    Abstract: A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 19, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kunliang Zhang, Pokang Wang, Joe Smyth
  • Patent number: 8203809
    Abstract: A hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed that is based on HB easy axis growth perpendicular to an underlying seed layer which is formed above a substrate and along two sidewalls of the sensor. In one embodiment, a conformal soft magnetic layer that may be a top shield contacts the HB layer to provide direct exchange coupling that compensates HB surface charges. Optionally, a thin capping layer on the HB layer enables magneto-static shield-HB coupling. After HB initialization, HB regions along the sensor sidewalls have magnetizations that are perpendicular to the sidewalls as a result of surface charges near the seed layer. Sidewalls may be extended into the substrate (bottom shield) to give enhanced protection against side reading. The top surface of the seed layer may be amorphous or crystalline to promote HB easy axis perpendicular growth.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: June 19, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kenichi Takano, Kunliang Zhang
  • Publication number: 20120139649
    Abstract: A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Inventors: Yuchen Zhou, Kunliang Zhang, Pokang Wang, Joe Smyth
  • Publication number: 20120128870
    Abstract: A method of forming a high performance magnetic tunnel junction (MTJ) is disclosed wherein the tunnel barrier includes at least three metal oxide layers. The tunnel barrier stack is partially built by depositing a first metal layer, performing a natural oxidation (NOX) process, depositing a second metal layer, and performing a second NOX process to give a MOX1/MOX2 configuration. An uppermost metal layer on the MOX2 layer is not oxidized until after the MTJ stack is completely formed and an annealing process is performed to drive unreacted oxygen in the MOX1 and MOX2 layers into the uppermost metal layer. In an alternative embodiment, a plurality of metal oxide layers is formed on the MOX1 layer before the uppermost metal layer is deposited. The resulting MTJ stack has an ultralow RA around 1 ohm-?m2 and maintains a high magnetoresistive ratio characteristic of a single metal oxide tunnel barrier layer.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Publication number: 20120129007
    Abstract: The free layer of a CPP-TMR sensor is biased by laterally disposed hard bias (HB) layers that include a seedlayer structure, a magnetic layer structure of high coercivity material and a capping layer structure. The magnetic layer structure is a layer of FePt-containing material, such as FePtCu, while the seedlayers and capping layers include layers of Cr, CrTi, Fe, FeCo or FeCoMo. These combinations enable the promotion of the L10 phase of the FePt-containing material which provides a high coercivity magnetic layer structure at much lower annealing temperatures than in the prior art.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Inventors: Min Zheng, Kunliang Zhang, Min Li
  • Publication number: 20120126905
    Abstract: A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer/spin injection layer (SIL)/spacer/PMA layer 1/FGL/spacer/PMA layer 2/capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer/SIL/spacer/PMA assist 1/FGL/spacer/PMA assist 2/capping layer configuration. SIL and PMA assist layers are laminates of (CoFe/Ni)x or the like.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8184411
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin composite seed layer made of at least Ta and a metal layer having fcc(111) or hcp(001) texture as in Ta/Ti/Cu to enhance perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (CoFe/Ni)x, (Co/NiFe)x, (Co/NiCo)x, (CoFe/NiFe)x, or (CoFe/NiCo)x composition where x is from 5 to 30. In one embodiment, a CPP-TMR spin valve has one or both of a laminated free layer and laminated reference layer with the aforementioned compositions. The MTJ includes an interfacial layer made of CoFeB, CoFeB/CoFe, or CoFe/CoFeB between each laminated structure and the tunnel barrier. The laminated layers are deposited by a low power and high Ar pressure process to avoid damaging interfaces between adjoining layers. Annealing occurs at 220° C. to 400° C. A laminated layer with high PMA may also be included in one or more layers of a spin transfer oscillator.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: May 22, 2012
    Assignees: Headway Technologies, Inc., MagIC Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Pokang Wang, Yuchen Zhou, Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20120113540
    Abstract: A spin torque oscillator is described in which the conventional Field Generation Layer (FGL) is replaced by a bilayer, one of whose members exhibits perpendicular magnetic anisotropy while the other exhibits conventional in-plane anisotropy. Provided the layer with the perpendicular anisotropy is the one that is closest to the spacer layer, the device is able to generate microwaves at current densities as low as 1×108 A/cm2.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 10, 2012
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8164862
    Abstract: A composite seed layer that reduces the shield to shield distance in a read head while improving Hex (exchange coupling field) and Hex/Hc (Hc=coercivity) is disclosed and has a SM/A/SM/B configuration in which the SM layers are soft magnetic layers, the A (amorphous) layer is made of at least one of Co, Fe, Ni, and includes one or more amorphous elements, and the B layer is a buffer layer that contacts the AFM (anti-ferromagnetic) layer in the spin valve. The SM/A/SM stack together with the S1 (bottom) shield forms an effective shield such that the buffer layer serves as the effective seed layer while maintaining a blocking temperature of 260° C. in the AFM layer. The lower SM layer may be omitted. Examples of the amorphous layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr while the buffer layer may be Cu, Ru, Cr, Al, or NiFeCr.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: April 24, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Tong Zhao, Hui-Chuan Wang, Min Li
  • Publication number: 20120087042
    Abstract: A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an antiferromagnetic (AFM) state during non-writing and switches to a ferromagnetic (FM) state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of “n” ferromagnetic layers and “n?1” AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh, FeRhPt, FeRhPd, or FeRhIr and may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.
    Type: Application
    Filed: August 22, 2011
    Publication date: April 12, 2012
    Inventors: Yuchen Zhou, Kenichi Takano, Kowang Liu, Kunliang Zhang, Liejie Guan, Moris Dovek, Joe Smyth
  • Publication number: 20120038012
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1+10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 16, 2012
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8107201
    Abstract: A hard bias structure for biasing a free layer in a MR element within a read head is comprised of a composite hard bias layer having a Co78.6Cr5.2Pt16.2/Co65Cr15Pt20 configuration. The upper Co65Cr15Pt20 layer has a larger Hc value and a thickness about 2 to 10 times greater than that of the Co78.6Cr5.2Pt16.2 layer. The hard bias structure may also include a BCC underlayer such as FeCoMo which enhances the magnetic moment of the hard bias structure. Optionally, the thickness of the Co78.6Cr5.2Pt16.2 layer is zero and the Co65Cr15Pt20 layer is formed on the BCC underlayer. The present invention also encompasses a laminated hard bias structure. The Mrt value for the hard bias structure may be optimized by adjusting the thicknesses of the BCC underlayer and CoCrPt layers. As a result, a larger process window is realized and lower asymmetry output during a read operation is achieved.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: January 31, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Yun-Fei Li, Chyu-Jiuh Torng, Chen-Jung Chien
  • Patent number: 8105703
    Abstract: The conventional free layer in a CPP GMR or TMR read head has been replaced by a tri-layer laminate comprising Co rich CoFe, moderately Fe rich NiFe, and heavily Fe rich NiFe. The result is an improved device that has a higher MR ratio than prior art devices, while still maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is described.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: January 31, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Min Li, Tong Zhao, Kunliang Zhang, Chyu-Jiuh Torng