Patents by Inventor Kunliang Zhang

Kunliang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120009337
    Abstract: A CPP-GMR spin valve having a composite spacer layer comprised of at least one metal (M) layer and at least one semiconductor or semi-metal (S) layer is disclosed. The composite spacer may have a M/S, S/M, M/S/M, S/M/S, M/S/M/S/M, or a multilayer (M/S/M)n configuration where n is an integer?1. The pinned layer preferably has an AP2/coupling/AP1 configuration wherein the AP2 portion is a FCC trilayer represented by CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where y is 0 to 60 atomic %, and z is 75 to 100 atomic %. In one embodiment, M is Cu with a thickness from 0.5 to 50 Angstroms and S is ZnO with a thickness of 1 to 50 Angstroms. The S layer may be doped with one or more elements. The dR/R ratio of the spin valve is increased to 10% or greater while maintaining acceptable EM and RA performance.
    Type: Application
    Filed: September 15, 2011
    Publication date: January 12, 2012
    Inventors: Kunliang Zhang, Min Li, Moris Dovek, Yue Liu
  • Publication number: 20110318608
    Abstract: The invention discloses how the insertion of a layer of CoFeB serves to increase the robustness of an MTF device by smoothing the interface between the tunnel barrier and the pinned layer.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventors: Hui-Chuan Wang, Kunliang Zhang, Tong Zhao, Min Li
  • Publication number: 20110308074
    Abstract: A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an AFM state during non-writing and switches to a FM state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of “n” ferromagnetic layers and “n?1” AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh or FeRhX alloy (X=Pt, Pd, or Ir) having a Rh content>35 atomic %. AFM-FM phase change material may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 22, 2011
    Inventors: Yuchen Zhou, Kenichi Takano, Kowang Liu, Kunliang Zhang, Liejie Guan, Moris Dovek, Joe Smyth
  • Publication number: 20110293967
    Abstract: Perpendicular magnetic anisotropy and Hc are enhanced in magnetic devices with a Ta/M1/M2 seed layer where M1 is preferably Ti, and M2 is preferably Cu, and including an overlying (Co/Ni)X multilayer (x is 5 to 50) that is deposited with ultra high Ar pressure of >100 sccm to minimize impinging energy that could damage (Co/Ni)X interfaces. In one'embodiment, the seed layer is subjected to one or both of a low power plasma treatment and natural oxidation process to form a more uniform interface with the (Co/Ni)X multilayer. Furthermore, an oxygen surfactant layer may be formed at one or more interfaces between adjoining (Co/Ni)X layers in the multilayer stack. Annealing at temperatures between 180° C. and 400° C. also increases Hc but the upper limit depends on whether the magnetic device is MAMR, MRAM, a hard bias structure, or a perpendicular magnetic medium.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8064244
    Abstract: A spin valve structure for a spintronic device is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x multilayer. The (Co/Ni)x multilayer is deposited by a low power and high Ar pressure process to avoid damaging Co/Ni interfaces and thereby preserving PMA. As a result, only a thin seed layer is required. PMA is maintained even after annealing at 220° C. for 10 hours. Examples of GMR and TMR spin valves are described and may be incorporated in spin transfer oscillators and spin transfer MRAMs. The free layer is preferably made of a FeCo alloy including at least one of Al, Ge, Si, Ga, B, C, Se, Sn, or a Heusler alloy, or a half Heusler alloy to provide high spin polarization and a low magnetic damping coefficient.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 22, 2011
    Assignees: TDK Corporation, Kabushiki Kaisha Toshiba
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou, Soichi Oikawa, Kenichiro Yamada, Katsuhiko Koui
  • Publication number: 20110279921
    Abstract: A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8059374
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1×10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: November 15, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Publication number: 20110273802
    Abstract: A MR sensor is disclosed that has a free layer (FL) with perpendicular magnetic anisotropy (PMA) which eliminates the need for an adjacent hard bias structure to stabilize free layer magnetization and minimizes shield-FL interactions. In a TMR embodiment, a seed layer, free layer, junction layer, reference layer, and pinning layer are sequentially formed on a bottom shield. After patterning, a conformal insulation layer is formed along the sensor sidewall. Thereafter, a top shield is formed on the insulation layer and includes side shields that are separated from the FL by a narrow read gap. The sensor is scalable to widths <50 nm when PMA is greater than the FL self-demag field. Effective bias field is rather insensitive to sensor aspect ratio which makes tall stripe and narrow width sensors a viable approach for high RA TMR configurations. Side shields may be extended below the seed layer plane.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 10, 2011
    Inventors: Yuchen Zhou, Kunliang Zhang, Zhigang Bai
  • Publication number: 20110265325
    Abstract: A novel CCP scheme is disclosed for a CPP-GMR sensor in which an amorphous metal/alloy layer such as Hf is inserted between a lower Cu spacer and an oxidizable layer such as Al, Mg, or AlCu prior to performing a pre-ion treatment (PIT) and ion assisted oxidation (IAO) to transform the amorphous layer into a first metal oxide template and the oxidizable layer into a second metal oxide template both having Cu metal paths therein. The amorphous layer promotes smoothness and smaller grain size in the oxidizable layer to minimize variations in the metal paths and thereby improves dR/R, R, and dR uniformity by 50% or more. An amorphous Hf layer may be used without an oxidizable layer, or a thin Cu layer may be inserted in the CCP scheme to form a Hf/PIT/IAO or Hf/Cu/Al/PIT/IAO configuration. A double PIT/IAO process may be used as in Hf/PIT/IAO/Al/PIT/IAO or Hf/PIT/IAO/Hf/PIT/IAO schemes.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Inventors: Kunliang Zhang, Min Li, Yue Liu, Hideaki Fukuzawa, Hiromi Yuasa
  • Publication number: 20110268992
    Abstract: An insertion layer is provided between an AFM layer and an AP2 pinned layer in a GMR or TMR element to improve exchange coupling properties by increasing Hex and the Hex/Hc ratio without degrading the MR ratio. The insertion layer may be a 1 to 15 Angstrom thick amorphous magnetic layer comprised of at least one element of Co, Fe, or Ni, and at least one element having an amorphous character selected from B, Zr, Hf, Nb, Ta, Si, or P, or a 1 to 5 Angstrom thick non-magnetic layer comprised of Cu, Ru, Mn, Hf, or Cr. Preferably, the content of the one or more amorphous elements in the amorphous magnetic layer is less than 40 atomic %. Optionally, the insertion layer may be formed within the AP2 pinned layer. Examples of an insertion layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr.
    Type: Application
    Filed: June 30, 2011
    Publication date: November 3, 2011
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Min Li
  • Publication number: 20110260270
    Abstract: The performance of an MR device has been improved by inserting one or more Magneto-Resistance Enhancing Layers (MRELs) into approximately the center of one or more of the active layers (such as API, SIL, FGL, and Free layers). An MREL is a layer of a low band gap, high electron mobility semiconductor such as ZnO or a semimetal such as Bi.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8031445
    Abstract: A magnetic sensor, formed from a pair of magnetically free layers located on opposing sides of a non-magnetic layer, and method for its manufacture, are described. Biasing these free layers to be roughly orthogonal to one another causes them to be magnetostatically coupled in a weak antiferromagnetic mode. This enables the low frequency noise spectra of the two free layers to cancel one another. Careful control of the SH/TW ratio is an important feature of the device.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 4, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kunliang Zhang, Yu-Hsai Chen, Tong Zhao, Moris Dovek
  • Patent number: 8031441
    Abstract: A CPP-GMR spin valve having a composite spacer layer comprised of at least one metal (M) layer and at least one semiconductor or semi-metal (S) layer is disclosed. The composite spacer may have a M/S, S/M, M/S/M, S/M/S, M/S/M/S/M, or a multilayer (M/S/M)n configuration where n is an integer ?1. The pinned layer preferably has an AP2/coupling/AP1 configuration wherein the AP2 portion is a FCC trilayer represented by CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where y is 0 to 60 atomic %, and z is 75 to 100 atomic %. In one embodiment, M is Cu with a thickness from 0.5 to 50 Angstroms and S is ZnO with a thickness of 1 to 50 Angstroms. The S layer may be doped with one or more elements. The dR/R ratio of the spin valve is increased to 10% or greater while maintaining acceptable EM and RA performance.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 4, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Moris Dovek, Yue Liu
  • Patent number: 8023218
    Abstract: We describe a system for electric field assisted magnetic recording where a recordable magnetic medium includes a magnetic recording layer of high coercivity and vertical magnetic anisotropy that is adjacent to an electrostrictive layer which can be placed in a state of stress by a electric field or which is already pre-stressed and which pre-stress can be turned into strain by an electric field. When the magnetic medium is acted on simultaneously by a magnetic writing field and an electric field, the stress in the electrostrictive layer is transferred to a magnetostrictive layer which is the magnetic recording layer by itself or is coupled to the magnetic recording layer, whereupon the magnetic recording layer is made more isotropic and more easily written upon. Residual stresses in the electrostrictive layer can then be removed by an additional electric field of opposite sign to the stress-producing field.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: September 20, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kowang Liu, Kunliang Zhang, Erhard Schreck
  • Publication number: 20110215800
    Abstract: A CPP MR sensor interposes a tapered soft magnetic flux guide (FG) layer between a hard magnetic biasing layer (HB) and the free layer of the sensor stack. The flux guide channels the flux of the hard magnetic biasing layer to effectively bias the free layer, while eliminating instability problems associated with magnetostatic coupling between the hard bias layers and the upper and lower shields surrounding the sensor when the reader-shield-spacing (RSS) is small.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Inventors: Yuchen Zhou, Tong Zhao, Kunliang Zhang
  • Patent number: 8012316
    Abstract: A method of forming a CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe50 or Co75Fe25 single layer. MR ratio is also increased and RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 6, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Dan Abels, Min Li, Chyu-Jiuh Torng, Chen-Jung Chien, Yu-Hsia Chen
  • Patent number: 8008740
    Abstract: A high performance TMR sensor is fabricated by employing a composite inner pinned (AP1) layer in an AP2/Ru/AP1 pinned layer configuration. In one embodiment, there is a 10 to 80 Angstrom thick lower CoFeB or CoFeB alloy layer on the Ru coupling layer, a and 5 to 50 Angstrom thick Fe or Fe alloy layer on the CoFeB or CoFeB alloy, and a 5 to 30 Angstrom thick Co or Co rich alloy layer formed on the Fe or Fe alloy. A MR ratio of about 48% with a RA of <2 ohm-um2 is achieved when a CoFe AP2 layer, MgO (NOX) tunnel barrier, and CoFe/NiFe free layer are used in the TMR stack. Improved RA uniformity and less head noise are observed. Optionally, a CoFe layer may be inserted between the coupling layer and CoFeB or CoFeB alloy layer to improve pinning strength and enhance crystallization.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 30, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Kunliang Zhang, Yu-Hsia Chen, Min Li
  • Publication number: 20110205669
    Abstract: According to one embodiment, a method for manufacturing a magneto-resistance effect element is disclosed. The element has first and second magnetic layers, and an intermediate layer provided between the first and second magnetic layers. The intermediate layer has an insulating layer and a conductive portion penetrating through the insulating layer. The method can include forming a structure body having the insulating layer and the conductive portion, performing a first treatment including irradiating the structure body with at least one of ion including at least one selected from the group consisting of argon, xenon, helium, neon and krypton and a plasma including at least one selected from the group, and performing a second treatment including at least one of exposure to gas containing oxygen or nitrogen, irradiation of ion beam containing oxygen or nitrogen, irradiation of plasma containing oxygen or nitrogen, to the structure body submitted to the first treatment.
    Type: Application
    Filed: September 14, 2010
    Publication date: August 25, 2011
    Applicants: Kabushiki Kaisha Toshiba, TDK CORPORATION
    Inventors: Shuichi Murakami, Hiromi Yuasa, Michiko Hara, Yoshihiko Fuji, Hideaki Fukuzawa, Kunliang Zhang, Min Li
  • Patent number: 8004794
    Abstract: A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an AFM state during non-writing and switches to a FM state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of “n” ferromagnetic layers and “n?1” AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh or FeRhX alloy (X=Pt, Pd, or Ir) having a Rh content >35 atomic %. AFM-FM phase change material may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: August 23, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kenichi Takano, Kowang Liu, Kunliang Zhang, Liejie Guan, Moris Dovek, Joe Smyth
  • Publication number: 20110188157
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration where a top surface of FL1 is treated with a weak plasma etch is disclosed for achieving enhanced dR/R while maintaining low RA, and low ? in TMR or GMR sensors. The weak plasma etch removes less than about 0.2 Angstroms of FL1 and is believed to modify surface structure and possibly increase surface energy. FL1 may be CoFe, CoFe/CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb having a (+) ? value. FL2 may be CoFe, NiFe, or alloys thereof having a (?) ? value. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. When CoFeBTa is selected as insertion layer, the CoFeB:Ta ratio is from 1:1 to 4:1.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 4, 2011
    Inventors: Tong Zhao, Hui Chuan Wang, Min Li, Kunliang Zhang