Patents by Inventor Kuo-Cheng Ching

Kuo-Cheng Ching has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200312847
    Abstract: A FinFET device includes a fin, an epitaxial layer disposed at a side surface of the fin, a contact disposed on the epitaxial layer and on the fin. The contact includes an epitaxial contact portion and a metal contact portion disposed on the epitaxial contact portion. The doping concentration of the epitaxial contact portion is higher than a doping concentration of the epitaxial layer.
    Type: Application
    Filed: May 18, 2020
    Publication date: October 1, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng CHING, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 10790280
    Abstract: A semiconductor includes a first transistor and a second transistor. The first transistor includes a first and a second epitaxial layer, formed of a first semiconductor material. The second epitaxial layer is disposed over the first epitaxial layer. The first transistor also includes a first gate dielectric layer surrounds the first and second epitaxial layers and extends from a top surface of the first epitaxial layer to a bottom surface of the second epitaxial layer and a first metal gate layer surrounding the first gate dielectric layer. The second transistor includes a third epitaxial layer formed of the first semiconductor material and a fourth epitaxial layer disposed directly on the third epitaxial layer and formed of a second semiconductor. The second transistor also includes a second gate dielectric layer disposed over the third and fourth epitaxial layers and a second metal gate layer disposed over the second gate dielectric layer.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Chung-Cheng Wu, Ching-Fang Huang, Wen-Hsing Hsieh, Ying-Keung Leung, Cheng-Ting Chung
  • Publication number: 20200295155
    Abstract: Semiconductor structures including active fin structures, dummy fin structures, epitaxy layers, a Ge containing oxide layer and methods of manufacture thereof are described. By implementing the Ge containing oxide layer on the surface of the epitaxy layers formed on the source/drain regions of some of the FinFET devices, a self-aligned epitaxy process is enabled. By implementing dummy fin structures and a self-aligned etch, both the epitaxy layers and metal gate structures from adjacent FinFET devices are isolated in a self-aligned manner.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng CHING, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 10777554
    Abstract: An integrated circuit (IC) device comprises a substrate having a metal-oxide-semiconductor (MOS) region; a gate region disposed over the substrate and in the MOS region; and source/drain features in the MOS region and separated by the gate region. The gate region includes a fin structure and a nanowire over the fin structure. The nanowire extends from the source feature to the drain feature.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ting-Hung Hsu
  • Publication number: 20200287018
    Abstract: A semiconductor structure includes a substrate, a fin, a bottom capping structure and a top capping structure. The fin disposed on the substrate, the fin has a lower portion and an upper portion extending upwards from the lower portion. The bottom capping structure covers a sidewall of the lower portion of the fin. The top capping structure covers a sidewall of the upper portion of the fin.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng CHING, Shi-Ning JU, Chih-Hao WANG, Ying-Keung LEUNG
  • Publication number: 20200287047
    Abstract: A device includes a semiconductor substrate, a first fin arranged over the semiconductor substrate, and an isolation structure. The first fin includes an upper portion, a bottom portion, and an insulator layer between the upper portion and the bottom portion. A top surface of the insulator layer is wider than a bottom surface of the upper portion of the first fin. The isolation structure surrounds the bottom portion of the first fin.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Hao KUO, Jung-Hao CHANG, Chao-Hsien HUANG, Li-Te LIN, Kuo-Cheng CHING
  • Publication number: 20200279778
    Abstract: A method of forming first and second fin field effect transistors (finFETs) on a substrate includes forming first and second fin structures of the first and second finFETs, respectively, on the substrate and forming first and second oxide regions having first and second thicknesses on top surfaces of the first and second fin structures, respectively. The method further includes forming third and fourth oxide regions having third and fourth thicknesses on sidewalls on the first and second fin structures, respectively. The first and second thicknesses are greater than the third and fourth thicknesses, respectively. The method further includes forming a first polysilicon structure on the first and third oxide regions and forming a second polysilicon structure on the second and fourth oxide regions.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Kuan-Ting Pan
  • Patent number: 10763255
    Abstract: A semiconductor device has a first fin, a second fin, an isolation structure between the first fin and the second fin, a dielectric stage in the isolation structure, and a helmet layer over the dielectric stage. A top surface of the helmet layer is higher than a top surface of the isolation structure.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Shi-Ning Ju, Chih-Hao Wang
  • Patent number: 10763365
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Ching-Wei Tsai, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kuo-Cheng Ching, Ru-Gun Liu, Wei-Hao Wu, Yi-Hsiung Lin, Chia-Hao Chang, Lei-Chun Chou
  • Publication number: 20200273964
    Abstract: A method of fabricating semiconductor devices is provided. The method includes forming a fin structure on a substrate, in which the fin structure includes a fin stack of alternating first and second semiconductor layers and forming recesses in the fin stack at source and drain regions. The method also includes etching the second semiconductor layers to form recessed second semiconductor layers, and forming third semiconductor layers on sidewalls of the recessed second semiconductor layers. The method further includes epitaxially growing source and drain structures in the recesses, removing the recessed second semiconductor layers to form spaces between the first semiconductor layers, and oxidizing the third semiconductor layers to form inner spacers. In addition, the method includes forming a gate structure to fill the spaces and to surround the first semiconductor layers.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung LIN, Pei-Hsun WANG, Chih-Hao WANG, Kuo-Cheng CHING, Jui-Chien HUANG
  • Patent number: 10755943
    Abstract: A method includes forming a mandrel structure over a semiconductor substrate. A first spacer and a second spacer are formed alongside the mandrel structure. A mask layer is over a first portion of the first spacer, in which a second portion of the first spacer and the second spacer are exposed from the mask layer. The exposed second spacer is etched, in which etching the exposed second spacer is performed such that a polymer is formed over a top surface of the exposed second portion of the first spacer. The mask layer, the polymer, and the mandrel structure are removed. The semiconductor substrate is patterned using the first spacer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Hao Chang, Chao-Hsien Huang, Wen-Ting Lan, Shi-Ning Ju, Li-Te Lin, Kuo-Cheng Ching
  • Publication number: 20200259014
    Abstract: A method includes forming a first semiconductor layer over a substrate. A second semiconductor layer is formed over the first semiconductor layer. The first semiconductor layer and the second semiconductor layer are etched to form a fin structure that extends from the substrate. The fin structure has a remaining portion of first semiconductor layer and a remaining portion of the second semiconductor layer atop the remaining portion of the first semiconductor layer. A capping layer is formed to wrap around three sides of the fin structure. At least a portion of the capping layer and at least a portion of the remaining portion of the second semiconductor layer in the fin structure are oxidized to form an oxide layer wrapping around three sides of the fin structure.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng CHING, Kuan-Ting PAN, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20200258999
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The formation method includes forming a fin structure over a semiconductor substrate and forming a first isolation feature in the fin structure. The formation method also includes forming a second isolation feature over the semiconductor substrate after the formation of the first isolation feature. The fin structure and the first isolation feature protrude from the second isolation feature. The formation method further includes forming gate stacks over the second isolation feature, wherein the gate stacks surround the fin structure and the first isolation feature.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng CHING, Shi-Ning JU, Kuan-Ting PAN, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 10741672
    Abstract: A method of forming a fin field effect transistors (finFET) on a substrate includes forming a fin structure on the substrate, forming a protective layer on the fin structure, and forming a polysilicon structure on the protective layer. The method further includes modifying the polysilicon structure such that a first horizontal dimension of a first portion of the modified polysilicon structure is smaller than a second horizontal dimension of a second portion of the modified polysilicon structure. The method further includes replacing the modified polysilicon structure with a gate structure having a first horizontal dimension of a first portion of the gate structure that is smaller than a second horizontal dimension of a second portion of the gate structure.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20200243665
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and a second fin structure extending above an isolation structure. The semiconductor device structure includes a dummy fin structure formed over the isolation structure, and the dummy fin structure is between the first fin structure and the second fin structure. The semiconductor device structure includes a capping layer formed over the dummy fin structure, and the top surface of the capping layer is higher than the top surface of the first fin structure and the top surface of the second fin structure. The semiconductor device structure includes a first gate structure formed over first fin structure, and a second gate structure formed over the second fin structure. The first gate structure and the second gate structure are separated by the dummy fin structure and the capping layer.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng CHING, Zhi-Chang LIN, Kuan-Ting PAN, Chih-Hao WANG, Shi-Ning JU
  • Publication number: 20200243666
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes an isolation structure formed over a substrate, and a first stacked wire structure and a second stacked wire structure extending above the isolation structure. The semiconductor device structure includes a dummy fin structure formed over the isolation structure, and the dummy fin structure is between the first stacked wire structure and the second stacked wire structure. The semiconductor device structure also includes a capping layer formed over the dummy fin structure. The isolation structure has a first width, the dummy fin structure has a second width, and the second width is smaller than the first width.
    Type: Application
    Filed: November 14, 2019
    Publication date: July 30, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng CHING, Zhi-Chang LIN, Kuan-Ting PAN, Chih-Hao WANG, Shi-Ning JU
  • Patent number: 10720503
    Abstract: A semiconductor device includes a semiconductor substrate, a first fin structure and a second fin structure. The first fin structure includes a first fin and at least two first nano wires disposed above the first fin, and the first fin protrudes from the semiconductor substrate. The second fin structure includes a second fin and at least two second nano wires disposed above the second fin, and the second fin protrudes from the semiconductor substrate. Each first nano wire has a first width different from a second width of each second nano wire.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: July 21, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Shi-Ning Ju, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 10714394
    Abstract: A method of forming a fin field effect transistor (finFET) on a substrate includes forming a fin structure on the substrate and forming a shallow trench isolation (STI) region on the substrate. First and second fin portions of the fin structure extend above a top surface of the STI region. The method further includes oxidizing the first fin portion to convert a first material of the first fin portion to a second material. The second material is different from the first material of the first fin portion and a material of the second fin portion. The method further includes forming an oxide layer on the oxidized first fin portion and the second fin portion and forming first and second polysilicon structures on the oxide layer.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Kuan-Lun Cheng, Yen-Ming Chen
  • Patent number: 10700183
    Abstract: A method for forming a FinFET device structure includes forming a first fin structure in a core region of a substrate and a second fin structure in an input/output region of the substrate with a fin top layer and a hard mask layer over the fin structures. The method also includes forming a dummy oxide layer across the fin structures. The method also includes forming a dummy gate structure over the dummy oxide layer. The method also includes removing the dummy gate structure over fin structures. The method also includes removing the dummy oxide layer and trimming the fin structures. The method also includes forming first and second oxide layers across the first and second fin structures. The method also includes forming first and second gate structures over the first and second oxide layers across the first and second fin structures.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Kuan-Ting Pan, Shi-Ning Ju, Chih-Hao Wang
  • Patent number: 10699964
    Abstract: Among other things, one or semiconductor arrangements, and techniques for forming such semiconductor arrangements are provided. For example, one or more silicon and silicon germanium stacks are utilized to form PMOS transistors comprising germanium nanowire channels and NMOS transistors comprising silicon nanowire channels. In an example, a first silicon and silicon germanium stack is oxidized to transform silicon to silicon oxide regions, which are removed to form germanium nanowire channels for PMOS transistors. In another example, silicon and germanium layers within a second silicon and silicon germanium stack are removed to form silicon nanowire channels for NMOS transistors. PMOS transistors having germanium nanowire channels and NMOS transistors having silicon nanowire channels are formed as part of a single fabrication process.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuo-Cheng Ching, Carlos H. Diaz, Jean-Pierre Colinge